Chi-Min Shu

National Yunlin University of Science and Technology, Tou-liu, Taiwan, Taiwan

Are you Chi-Min Shu?

Claim your profile

Publications (110)137.63 Total impact

  • Shang-Hao Liu, Chi-Min Shu, Hung-Yi Hou
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2011, a large petrochemical complex in Taiwan incurred several fire and explosion accidents, which had considerable negative impact for the industry on both environmental and safety issues. Reactive substances are widely used in many chemical industrial fields as an initiator, hardeners, or cross-linking agents of radical polymerization process with unsaturated monomer. However, the unpredictable factors during the process having risk to runaway reaction, thermal explosion, fire, and exposure to harmful toxic chemicals release due to the huge heat and gas products by thermal decomposition could not be removed from the process. This study used differential technology of thermal analysis to characterize the inherent hazard behaviors of azo compounds and organic peroxides in the process, to seek the elimination of the source of the harmful effects and achieve the best process safety practices with zero disaster and sound business continuity plan.
    Journal of Loss Prevention in the Process Industries 11/2014; · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, we have witnessed a deluge of multimedia data such as texts, images, and videos. However, the research of managing and retrieving these data efficiently is still in the development stage. The conventional tag-based searching approaches suffer from noisy or incomplete tag issues. As a result, the content-based multimedia data management framework has become increasingly popular. In this research direction, multimedia high-level semantic concept mining and retrieval is one of the fastest developing research topics requesting joint efforts from researchers in both data mining and multimedia domains. To solve this problem, one great challenge is to bridge the semantic gap which is the gap between high-level concepts and low-level features. Recently, positive inter-concept correlations have been utilized to capture the context of a concept to bridge the gap. However, negative correlations have rarely been studied because of the difficulty to mine and utilize them. In this paper, a concept mining and retrieval framework utilizing negative inter-concept correlations is proposed. Several research problems such as negative correlation selection, weight estimation, and score integration are addressed. Experimental results on TRECVID 2010 benchmark data set demonstrate that the proposed framework gives promising performance.
    2014 IEEE International Conference on Semantic Computing (ICSC); 06/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Isoprene monomer (IPM) is a colorless, volatile liquid obtained from petroleum or coal tar that occurs naturally in many process plants. It is used chiefly to make synthetic rubber. Our study used calorimetric approaches to conduct thermal analysis and hazard assessment of aluminum oxide (Al2O3) and IPM relevant studies. Differential scanning calorimetry, thermal activity monitor III, thermogravimetry, and vent sizing package 2 were used to discuss thermal instability reaction of Al2O3, which adsorbed IPM, and find every possible reason for cases of fire to prevent any future recurrence of the package store and transport related hazards. By means of calorimetric analysis technology, we can observe thermal decomposition or mass loss for different adsorbed concentrations of IPM and Al2O3 to discuss the related thermal stability parameters, such as exothermic onset temperature (T 0), heat of decomposition (ΔH d), self-accelerating exothermic rate (dT dt −1), pressure rise rate, and maximum reaction temperature (T max). Then, we can understand the potential hazard factors that contribute to disasters related to processing, transport, and storage of security controls and reaction process design.
    Journal of Thermal Analysis and Calorimetry 06/2014; 116(3). · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lauroyl peroxide (LPO) is a commonly used organic peroxide that has caused many thermal runaway reactions and explosions worldwide. Differential scanning calorimetry (DSC) was used to investigate the thermal decomposition of LPO and its exothermic onset temperature, reaction heat, and other safety parameters for prevention of runaway reactions and thermal explosions. Pre-exponential factor and apparent activation energy were determined by Friedman isoconversional method, which demonstrates that the decomposition of LPO shows a multi-step nature. The kinetic parameters and heat balance were analyzed and used for simulation of the adiabatic behavior time to maximum rate under adiabatic conditions (TMRad) and self-accelerating decomposition temperature (SADT). When the initial temperature is 32.7 °C, TMRad equals 24 h and calculated SADT of LPO is 45 °C. Application of finite element analysis (FEA) and accurate kinetic description allows determining the effect of scale, geometry, heat transfer, thermal conductivity, and ambient temperature on the heat accumulation. The reaction progress (α) and temperature distribution can be determined quantitatively at every point in time and space. This information is essential for the design of containers of LPO, cooling systems, and the measures to be taken in the event of a cooling failure.
    Journal of the Taiwan Institute of Chemical Engineers 03/2014; 45(2):461–467. · 2.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Compared to tunnels used for other modes of transportation, fire safety design problems in road tunnels are more challenging because of high-speed wind environmental impact. A video-based fire detection system (VFDS) applies inventive mathematical calculations and sophisticated computer models to analyze and tackle real-time video signals statistically and intelligently. VFDS-based temporal flicker modeling of flames and wavelet-based contour modeling approaches are used as weak classifiers. Experimental results have shown that false alarms issued by earlier methods can be significantly reduced by using separate flame and non-flame moving pixels. Whenever the system detects fire or smoke under wind or no wind environment, the VFDS server initiates actions, including visual and audible alarms, alarm messages, and video recording.
    Tunnelling and Underground Space Technology 02/2014; 40:16–21. · 1.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the thermal hazard features of various lithium-ion batteries, such as LiCoO2 and LiFePO4, were assessed properly by calorimetric techniques. Vent sizing package 2 (VSP2), an adiabatic calorimeter, was used to measure the thermal hazards and runaway characteristics of the 18650 lithium-ion batteries under an adiabatic condition. The thermal behaviors of the lithium-ion batteries were obtained at normal and abnormal conditions in this study. The critical parameters for thermal hazardous behavior of lithium-ion batteries were obtained including the exothermic onset temperature (T 0), heat of decomposition (ΔH), maximum temperature (T max), maximum pressure (P max), self-heating rate (dT/dt), and pressure rise rate (dP/dt). Therefore, the result indicates the thermal runaway situation of the lithium-ion battery with different materials and voltages in view the of TNT-equivalent method by VSP2. The hazard gets greater with higher voltage. Without the consideration of other anti-pressure measurements, different voltages involving 3.3, 3.6, 3.7, and 4.2 V are evaluated to 0.11, 0.23, 0.88, and 1.77 g of TNT. Further estimation of thermal runaway reaction and decomposition reaction of lithium-ion battery can also be confirmed by VSP2. It shows that the battery of a fully charged state is more dangerous than that of a storage state. The technique results showed that VSP2 can be used to strictly evaluate thermal runaway reaction and thermal decomposition behaviors of lithium-ion batteries. The loss prevention and thermal hazard assessment are very important for development of electric vehicles as well as other appliances in the future. Therefore, our results could be applied to define important safety indices of lithium-ion batteries for safety concerns.
    Journal of Thermal Analysis and Calorimetry 12/2013; · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated the effectiveness and performance of smoke management models in a TFT-LCD cleanroom. Several smoke management models are discussed in a distinct 3-level cleanroom compartment. The tools used included a fire dynamics simulator (FDS) and SIMULEX. The design fires were 3 MW and 5.4 MW in ultra fast fire, respectively. In life safety, both a downward smoke exhaust system and upward smoke exhaust system, incorporating a decrease of filter fan unit air supply rate, could be used in a cleanroom, according to the simulation results of performance-based design. For occupant evacuation, the SIMULEX results showed a total evacuation time less than smoke layer descending time, which descended to 1.8 m height from floor to smoke layer in all FDS simulations. In view of property protection, insurance companies generally require significantly higher standards of property protection. For 3 MW or more heat release rate, smoke was hardly controlled by any smoke exhaust system in the cleanroom without sprinklers.
    Building Simulation 12/2013; · 0.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the removal efficiency of PVA from aqueous solutions using UV irradiation in combination with the production of electrogenerated hydrogen peroxide (H2O2) at a polyacrylonitrile-based activated carbon fiber (ACF) cathode. Three cathode materials (i.e., platinum, graphite, and ACF) were fed with oxygen and used for the electrogeneration of H2O2. The amount of electrogenerated H2O2 produced using the ACF cathode was five times greater than that generated using the graphite cathode and nearly 24 times greater than that from platinum cathode. Several parameters were evaluated to characterize the H2O2 electrogeneration, such as current density, oxygen flow rate, solution pH, and the supporting electrolyte used. The optimum current density, oxygen flow rate, solution pH, and supporting electrolyte composition were found to be 10 mA cm−2, 500 cm3 min−1, pH 3, and Na2SO4, respectively. The PVA removal efficiencies were achieved under these conditions 3%, 16%, and 86% using UV, H2O2 electrogeneration, and UV/H2O2 electrogeneration, respectively. A UV light intensity of 0.6 mW cm−2 was found to produce optimal PVA removal efficiency in the present study. A simple kinetic model was proposed which confirmed pseudo-first-order reaction. Reaction rate constant () was found to depend on the UV light intensity.
    International Journal of Photoenergy 09/2013; 2013(Article ID 841762):9 pages. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: tert-Butyl hydroperoxide (TBHP, 70 mass %), which is a solution of liquid peroxide, has been widely employed in the chemical industry as a polymerization initiator. The smart technology for predicting the mechanism of thermal decomposition and the inhibitive or hazardous reaction of TBHP by different calorimetric tests involves using differential scanning calorimetry (DSC) nonisothermal tests versus DSC isothermal tests and vent sizing package 2 (VSP2) adiabatic tests versus DSC nonisothermal tests, respectively, for further understanding how to extinguish organic peroxide accidents under fire scenario or runaway reaction in a chemical plant. Meanwhile, TBHP mixed with inhibitive and hazardous materials, such as various protic acids to help prevent runaway reactions, was applied on fires or explosions in the fire system. The results could be available to fire-related agencies as a reference application. The fire extinguishing system must be well-designed to decrease the degree of hazard.
    Industrial & Engineering Chemistry Research. 08/2013; 52(32):10969–10976.
  • [Show abstract] [Hide abstract]
    ABSTRACT: tert-Butyl peroxy-2-ethyl hexanoate (TBPO), an organic peroxide broadly used as initiator for polymerization of ethylene, styrene, methyl methacrylate, and acrylonitrile, has the characteristic of triggering a highly exothermic reaction. Mixing with a contaminant, such as metal ions, may result in a runaway reaction and acceleration decomposition under an abnormal situation. We investigated how Cu2+, Ni2+, and Fe2+ individually affected the thermal decomposition of TBPO. Our aim was to explore the thermal hazard of TBPO mixed with metal ions by calorimetric techniques combined with thermokinetic models. We employed nonisothermal and isothermal calorimeters to determine various thermokinetic and safety parameters, including exothermic onset temperature (To), peak temperature (Tp), final temperature (Tf), heat of decomposition (ΔHd), and maximum heat flow (Qmax) by differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III). Moreover, the isothermal and nonisothermal kinetic models were applied to predict time to maximum rate under adiabatic conditions (TMRad), adiabatic temperature rise (ΔTad), time to conversion limit (TCL), control temperature (CT), emergency temperature (ET), and self-accelerating decomposition temperature (SADT). From the experimental results, Cu2+ could significantly affect TBPO to increase Qmax more than 2-fold as compared to the rest and T0 was advanced as well. Therefore, TBPO contamination by Cu2+ should be avoided during every stage of the manufacturing process.
    Industrial & Engineering Chemistry Research. 06/2013; 52(24):8206–8215.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plenty of thermal explosions and runaway reactions of cumene hydroperoxide (CHP) were described from 1981 to 2010 in Taiwan. Therefore, a thermal explosion accident of CHP in oxidation tower in 2010 in Taiwan was investigated because of piping breakage. In general, high concentration of CHP for thermal analysis using the calorimeter is dangerous. Therefore, a simulation method and a kinetic parameter were used to simulate thermal hazard of high concentrations of CHP only by the researcher. This study was applied to evaluate thermal hazard and to analyze storage parameters of 80 and 88 mass% CHP using three calorimeters for the oxidation tower, transportation, and 50-gallon drum. Differential scanning calorimetry (DSC) (a non-isothermal calorimeter), thermal activity monitor III (TAM III) (an isothermal calorimeter), and vent sizing package 2 (VSP2) (an adiabatic calorimeter) were employed to detect the exothermic behavior and runaway reaction model of 80 and 88 mass% CHP. Exothermic onset temperature (T 0), heat of decomposition (ΔH d), maximum temperature (T max), time to maximum rate under isothermal condition (TMRiso) (as an emergency response time), maximum pressure (P max), maximum of self-heating rate ((dT/dt)max), maximum of pressure rise rate ((dP/dt)max), half-life time (t 1/2), reaction order (n), activation energy (E a), frequency factor (A), etc., of 80 and 88 mass% CHP were applied to prevent thermal explosion and runaway reaction accident and to calculate the critical temperature (T c). Experimental results displayed that the n of 80 and 88 mass% CHP was determined to be 0.5 and the E a of 80 and 88 mass% CHP were evaluated to be 132 and 134 kJ mol−1, respectively.
    Journal of Thermal Analysis and Calorimetry 01/2013; 111(1). · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermal degradation of triacetone triperoxide (TATP) was studied using differential scanning calorimetry (DSC) and gas chromatography/mass spectrometry (GC/MS). TATP, a potential explosive material, is powerful organic peroxide (OP) that can be synthesized by available chemicals, such as acetone and hydrogen peroxide in the laboratory or industries. The thermokinetic parameters, such as exothermic onset temperature (T0) and heat of decomposition (ΔHd), were determined by DSC tests. The gas products from thermal degradation of TATP were identified using GC/MS technique.In this study, H2O2 was mixed with propanone (acetone) and H2SO4 catalysis that produced TATP. The T0 of TATP was determined to be 40 °C and Ea was calculated to be 65 kJ/mol. A thermal decomposition peak of H2O2 was analyzed by DSC and two thermal decomposition peaks of H2O2/propanone were determined. Therefore, H2O2/propanone mixture was applied to mix acid that was discovered a thermal decomposition peak (as TATP) in this study. According to risk assessment and analysis methodologies, risk assessment of TATP for the environmental and human safety issue was evaluated as 2-level of hazard probability rating (P) and 6-level of severity of consequences ratings (S). Therefore, the result of risk assessment is 12-point and was evaluated as “Undesirable” that should be enforced the effect of control method to reduce the risk.
    Journal of Loss Prevention in the Process Industries 11/2012; 25(6):1069–1074. · 1.15 Impact Factor
  • Source
    International journal of physical sciences 04/2012; 7(16):2445-2454. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Composite electrodes prepared by vertically aligned multi-walled carbon nanotubes (MWCNTs) coated with hydrous ruthenium dioxide (RuO2·nH2O) have previously been used in various supercapacitors. The specific capacitance when using RuO2·nH2O/MWCNT/Ti as electrodes in 1.0 M H2SO4 aqueous solution can reach up to 1652 F/g at a scan rate of 10 mV/s, which is larger than that of RuO2·nH2O/Ti or MWCNT/Ti. In this study, a RuO2·nH2O/MWCNT/Ti composite electrode was examined by X-ray photoelectron spectroscopy, which revealed the existence of hydrous ruthenium dioxide in the Ti current collector. The capacitive behavior of the electrode was analyzed by cyclic voltammetry and the galvanostatic charge–discharge method, and the morphology of the composite electrode was examined by scanning electron microscopy.
    Carbon. 04/2012; 50(5):1740–1747.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The thermal stability characteristics of multi-walled carbon nanotubes’ (MWCNTs), which may represent a decomposition reaction during the production or utilization stage, involve concerns over unsafe or unknown properties. We analyzed the thermokinetic parameters of different scanning rates by differential scanning calorimetry (DSC), and then compared the results of thermokinetic parameters under various conditions by nth-order kinetic equations and kinetic model simulation of five kinds of kinetic algorithm. Experimental results obtained strongly depended on the reliability of the kinetic model applied, which is essentially defined by the proper choice of a mathematical model of a reaction and the correctness of the methods used for kinetics evaluation. By the five types of kinetic algorithm, we obtained a reasonable value for the Ea of MWCNTs on thermal decomposition. Finally, we established an effective and swift procedure for receiving information on thermal decomposition characteristics and decomposition reaction of MWCNTs that could be applied as an intrinsically safer design during normal or upset operation.
    Journal of Loss Prevention in the Process Industries 03/2012; 25(2):302–308. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flammability limits are two of the most important variables used to assess the fire and explosion hazards of gases and vapors, and inerting is frequently used in industry to reduce fire and explosion hazards. A model based on the energy balance equation that takes into account thermal radiation loss and constant flame temperature was developed to estimate the flammability envelope of fuel–air–diluent mixtures tested in a constant pressure vessel. The validation of the model was done by comparing the estimated values with the corresponding experimental data for methane, ethylene, propane, propylene, isobutane, and methyl formate with nitrogen or carbon dioxide as the inert gas. The difference in the estimated flammability envelopes between the different heat loss considerations is small. The predictions of the lower flammability limits are in excellent agreement with the experimental data, except for the region approaching the limiting oxygen concentration, where the assumption of complete consumption of the fuel fails. The different behaviors of the lower flammability limit variations for nitrogen and carbon dioxide, when these are both used as inert gases, are attributable to different trends in heat capacity values between air and the two inert gases. Because of the ambiguity of the combustion product distributions, the estimated upper flammability limits are not as precise as the estimated lower flammability limits; however, they are acceptable. Overall, the model describes the experimental data well.
    Industrial & Engineering Chemistry Research. 02/2012; 51(6):2747–2761.
  • Wei-Ting Chen, Chi-Min Shu
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate change has had a global environmental impact, necessitating concerted efforts to mitigate the subsequent damage. In the majority of such efforts, upper limits are set for greenhouse gas (GHG) emissions by utilities and industries, and exchangeable permits are made available to emitters in the form of allocations based on past emissions, auctions, or a combination of both. In this complicated atmosphere, the environmental problems related to climate change have turned into a sensitive international political topic that has been discussed at the United Nations General Assembly since 1988, and the threat of global warming has received increasing attention. In 1994, 150 countries made agreements under the United Nations Framework Convention on Climate Change (UNFCCC). Since then, the United Nations (UN) has held a UNFCCC convention annually. Because Taiwan is not a signatory nation to the Kyoto Protocols, we may not be “legally” compelled to obey the regulations on carbon dioxide reduction. However, the total production of GHGs by our country represents one percent of that for the entire world, and with respect to our responsibilities as members of the so-called “Global Village” and the restrictions of the international contract, it is truly wise to consider and develop measures for GHG reduction as soon as possible. To coincide with the co-related missions of being a “Healthy City,” a “City of Continual Development”, and the “Green Society City of Tainan,” the Tainan city government has created a set of ideal institutional mission-statements called the “Healthy Continually Developing City” and has planned a series of GHG impetuses, which include pushing outreach activities on energy conservation and carbon dioxide reduction, such as environmentally-friendly hotels, green energy stores, energy conserving temples, vegetarian restaurants and waste reduction. Because of activities such as using the four methods of energy conservation at department stores and applying energy-conserving light sources at Ta-Tien-Hou temple, carbon emissions have been reduced to 1,176,792kg (56.1%) and 148,016kg (96.0%), respectively, per year.
    Separation and Purification Technology - SEP PURIF TECHNOL. 01/2012;
  • Jen-Hao Chi, Sheng-Hung Wu, Chi-Min Shu
    [Show abstract] [Hide abstract]
    ABSTRACT: The before fire assessment data from the ARC fire risk assessment system and the financial loss from post-fire damage report for factory-type buildings located in Taiwan were collected. The correlation between assessment data and degree of fire loss (DFL) was calculated by three regression analyses – linear, power, and exponential equations – to produce an anticipation formula. The results revealed that there is more a believable prediction when the fire loss is bigger, regardless of the amount of fire loss or the DFL, while the latter is more related to the assessment grade. By providing proprietors and insurance companies detailed fire risk analysis showing predictable financial loss, it is advantageous for budget management and fire protection, enforcement and should result in the reduction of fire risk and subsequent damage to factory-type buildings.
    Journal of The Chinese Institute of Engineers - J CHIN INST ENGINEERS. 01/2012;
  • Hung-Yi Hou, Chung-Hwei Su, Chi-Min Shu
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have been performed to clarify the basic thermal runaway hazards and kinetics of cumene hydroperoxide (CHP) decomposition. However, materials that are incompatible with CHP have not been clearly identified. Alkaline solutions have been used as a catalyst to form dimethylphenyl carbinol (DMPC) and dicumyl peroxide (DCPO); however, these solutions also affect the reaction and storage temperature of CHP. In this study, thermal calorimeters, differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), were used to compare the effects of various bases on the decomposition of CHP in cumene. Specifically, the exothermic onset temperature, change in pressure over time, self-heating rate and heat of decomposition were evaluated. Moreover, to appraise the degree of hazard associated with the use of CHP, the compatibility of CHP with various substances was analyzed, and a risk matrix for thermal runaway reactions was obtained. The results of the present study could be used to design safety procedures for the production of CHP and its derivatives.
    Journal of Loss Prevention in the Process Industries 01/2012; 25(1):176–180. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen peroxide (H2O2), historically, due to its broad applications in the chemical industries, has caused many serious fires and explosions around the world. Its thermal hazards may also be incurred by an incompatible reaction with other chemicals, and a runaway reaction may be induced in the last stage. This study applied thermal analytical methods to explore the H2O2 leading to these accidents by incompatibility and to discuss what might be formed by the upset situations. Thermal hazard analysis contained a solvent, propanone (CH3COCH3, so-called acetone), which was deliberately selected to mix with H2O2 for investigating the degree of thermal hazard. Differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2) were employed to evaluate the thermal hazard of H2O2. The results indicated that H2O2 is highly hazardous while mixed with propanone, as a potential contaminant. The time to maximum rate (TMR) was used as emergency response time in the chemical industries. Therefore, TMR of H2O2 was calculated to be 70min for runaway reaction (after T0) and TMR of H2O2/propanone was discovered to be 27min only. Fire and explosion hazards could be successfully lessened if the safety-related data are properly imbedded into manufacturing processes.
    Journal of Loss Prevention in The Process Industries - J LOSS PREVENT PROC IND. 01/2012;

Publication Stats

416 Citations
137.63 Total Impact Points

Institutions

  • 2001–2014
    • National Yunlin University of Science and Technology
      • Department of Safety, Health and Environmental Engineering
      Tou-liu, Taiwan, Taiwan
  • 2012
    • Nanjing University of Science and Technology
      Nan-ching, Jiangsu Sheng, China
  • 2010–2012
    • R.D. University
      Jubbulpore, Madhya Pradesh, India
    • China Medical University (ROC)
      臺中市, Taiwan, Taiwan
  • 2011
    • WuFeng University
      Chia-i-hsien, Taiwan, Taiwan
  • 2009
    • Wufeng Institute of Technology
      Kao-hsiung-shih, Kaohsiung, Taiwan
  • 2008
    • National Chung Hsing University
      • Department of Chemistry
      Taichung, Taiwan, Taiwan
  • 2000–2004
    • University of Miami
      • Department of Electrical and Computer Engineering
      Coral Gables, FL, United States