Chadd W Clary

University of Denver, Denver, Colorado, United States

Are you Chadd W Clary?

Claim your profile

Publications (13)24.82 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kneeling is required during daily living for many patients after total knee replacement (TKR), yet many patients have reported that they cannot kneel due to pain, or avoid kneeling due to discomfort, which critically impacts quality of life and perceived success of the TKR procedure. The objective of this study was to evaluate the effect of component design on patellofemoral (PF) mechanics during a kneeling activity. A computational model to predict natural and implanted PF kinematics and bone strains after kneeling was developed and kinematics were validated with experimental cadaveric studies. PF joint kinematics and patellar bone strains were compared for implants with dome, medialized dome, and anatomic components. Due to the less conforming nature of the designs, change in sagittal plane tilt as a result of kneeling at 90 degrees knee flexion was approximately twice as large for the medialized-dome and dome implants as the natural case or anatomic implant, which may result in additional stretching of the quadriceps. All implanted cases resulted in substantial increases in bone strains compared with the natural knee, but increased strains in different regions. The anatomic patella demonstrated increased strains inferiorly, while the dome and medialized dome showed increases centrally. An understanding of the effect of implant design on patellar mechanics during kneeling may ultimately provide guidance to component designs that reduces the likelihood of knee pain and patellar fracture during kneeling.
    Journal of biomechanics 01/2014; · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posterior-stabilized (PS) total knee arthroplasty (TKA) components employ a tibial post and femoral cam mechanism to guide anteroposterior knee motion in lieu of the posterior cruciate ligament. Some PS TKA patients report a clicking sensation when the post and cam engage, while severe wear and fracture of the post; we hypothesize that these complications are associated with excessive impact velocity at engagement. We evaluated the effect of implant design on engagement dynamics of the post-cam mechanism and resulting polyethylene stresses during dynamic activity. In vitro simulation of a knee bend activity was performed for four cadaveric specimens implanted with PS TKA components. Post-cam engagement velocity and flexion angle at initial contact were determined. The experimental data were used to validate computational predictions of PS mechanics using the same loading conditions. A lower limb model was subsequently utilized to compare engagement mechanics of eight TKA designs, relating differences between implants to geometric design features. Flexion angle and post-cam velocity at engagement demonstrated considerable ranges among designs (23°-89°, and 0.05-0.22 mm/°, respectively). Post-cam velocity was correlated (r = 0.89) with tibiofemoral condylar design features. Condylar geometry, in addition to post-cam geometry, played a significant role in minimizing engagement velocity and forces and stresses in the post. This analysis guides selection and design of PS implants that facilitate smooth post-cam engagement and reduce edge loading of the post. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res.
    Journal of Orthopaedic Research 04/2013; · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluoroscopic evaluation of total knee arthroplasty (TKA) has reported sudden anterior translation of the femur relative to the tibia (paradoxical anterior motion) for some cruciate-retaining designs. This motion may be tied to abrupt changes in the femoral sagittal radius of curvature characteristic of traditional TKA designs, as the geometry transitions from a large load-bearing distal radius to a smaller posterior radius which can accommodate femoral rollback. It was hypothesized that a gradually reducing radius may attenuate sudden changes in anterior-posterior motion that occur in mid-flexion with traditional discrete-radius designs. A combined experimental and computational approach was employed to test this hypothesis. A previously developed finite element (FE) model of the Kansas knee simulator (KKS), virtually implanted with multiple implant designs, was used to predict the amount of paradoxical anterior femoral slide during a simulated deep knee bend. The model predicted kinematics demonstrated that incorporating a gradually reducing radius in mid-flexion reduced the magnitude of paradoxical anterior translation between 21% and 68%, depending on the conformity of the tibial insert. Subsequently, both a dual-radius design and a modified design incorporating gradually reducing radii were tested in vitro in the KKS for verification. The model-predicted and experimentally observed kinematics exhibited good agreement, while the average experimental kinematics demonstrated an 81% reduction in anterior translation with the modified design. The FE model demonstrated sufficient sensitivity to appropriately differentiate kinematic changes due to subtle changes in implant design, and served as a useful pre-clinical design-phase tool to improve implant kinematics.
    Journal of biomechanics 03/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Complications of the patellofemoral (PF) joint remain a common cause for revision of total knee replacements. PF complications, such as patellar maltracking, subluxation, and implant failure, have been linked to femoral and patellar component alignment. In this study, a dynamic finite element model of an implanted PF joint was applied in conjunction with a probabilistic simulation to establish relationships between alignment parameters and PF kinematics, contact mechanics, and internal stresses. Both traditional sensitivity analysis and a coupled probabilistic and principal component analysis approach were applied to characterize relationships between implant alignment and resulting joint mechanics. Critical alignment parameters, and combinations of parameters, affecting PF mechanics were identified for three patellar designs (dome, modified dome, and anatomic). Femoral internal-external (I-E) alignment was identified as a critical alignment factor for all component designs, influencing medial-lateral contact force and anterior-posterior translation. The anatomic design was sensitive to patellar flexion-extension (F-E) alignment, while the dome, as expected, was less influenced by rotational alignment, and more by translational position. The modified dome was sensitive to a combination of superior-inferior, F-E, and I-E alignments. Understanding the relationships and design-specific dependencies between alignment parameters can aid preoperative planning, and help focus instrumentation design on those alignment parameters of primary concern.
    Journal of Orthopaedic Research 07/2012; 30(7):1167-75. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinical studies demonstrate substantial variation in kinematic and functional performance within the total knee replacement (TKR) patient population. Some of this variation is due to differences in implant design, surgical technique and component alignment, while some is due to subject-specific differences in joint loading and anatomy that are inherently present within the population. Combined finite element and probabilistic methods were employed to assess the relative contributions of implant design, surgical, and subject-specific factors to overall tibiofemoral (TF) and patellofemoral (PF) joint mechanics, including kinematics, contact mechanics, joint loads, and ligament and quadriceps force during simulated squat, stance-phase gait and stepdown activities. The most influential design, surgical and subject-specific factors were femoral condyle sagittal plane radii, tibial insert superior-inferior (joint line) position and coronal plane alignment, and vertical hip load, respectively. Design factors were the primary contributors to condylar contact mechanics and TF anterior-posterior kinematics; TF ligament forces were dependent on surgical factors; and joint loads and quadriceps force were dependent on subject-specific factors. Understanding which design and surgical factors are most influential to TKR mechanics during activities of daily living, and how robust implant designs and surgical techniques must be in order to adequately accommodate subject-specific variation, will aid in directing design and surgical decisions towards optimal TKR mechanics for the population as a whole.
    Journal of biomechanics 06/2012; 45(12):2092-102. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Substantial variation in total knee replacement (TKR) outcomes exists within the patient population. Some of this variability is due to differences in the design of the implanted components and variation in surgical alignment, while other variability is due to differences in the applied forces and torques due to anatomic and physiological differences within a patient population. We evaluated the relative contributions of implant design, surgical alignment, and patient-specific loading variability to overall tibiofemoral joint mechanics to provide insight into which measures can be influenced through design and surgical decisions, and which are inherently dependent on variation within the patient population and should be considered in the robustness of the implant design and surgical procedure. Design, surgical, and loading parameters were assessed using probabilistic finite element methods during simulated stance-phase gait and squat activities. Patient-specific loading was found to be the primary contributor to joint loading and kinematics during low flexion, particularly under conditions of high external loads (for instance, the gait cycle with high internal-external torque), while design and surgical factors, particularly femoral posterior radius and posterior slope of the tibial insert became increasingly important in TKR performance in deeper flexion. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:2015-2024, 2012.
    Journal of Orthopaedic Research 06/2012; 30(12):2015-24. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional-integral-derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip-ankle anterior-posterior (A-P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressive joint load, medial-lateral load distribution or varus-valgus torque, internal-external torque, A-P force) for deep knee bend, chair rise, stance-phase gait and step-down activities.
    Computer Methods in Biomechanics and Biomedical Engineering 06/2012; · 1.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro pre-clinical testing of total knee replacement (TKR) devices is a necessary step in the evaluation of new implant designs. Whole joint knee simulators, like the Kansas knee simulator (KKS), provide a controlled and repeatable loading environment for comparative evaluation of component designs or surgical alignment under dynamic conditions. Experimental testing, however, is time and cost prohibitive for design-phase evaluation of tens or hundreds of design variations. Experimentally-verified computational models provide an efficient platform for analysis of multiple components, sizes, and alignment conditions. The purpose of the current study was to develop and verify a computational model of a dynamic, whole joint knee simulator. Experimental internal-external and valgus-varus laxity tests, followed by dynamic deep knee bend and gait simulations in the KKS were performed on three cadaveric specimens. Specimen-specific finite element (FE) models of posterior-stabilized TKR were created from magnetic resonance images and CAD geometry. The laxity data was used to optimize mechanical properties of tibiofemoral soft-tissue structures on a specimen-specific basis. Each specimen was subsequently analyzed in a computational model of the experimental KKS, simulating both dynamic activities. The computational model represented all joints and actuators in the experimental setup, including a proportional-integral-derivative (PID) controller to drive quadriceps actuation. The computational model was verified against six degree-of-freedom patellofemoral (PF) and tibiofemoral (TF) kinematics and actuator loading during both deep knee bend and gait activities, with good agreement in trends and magnitudes between model predictions and experimental kinematics; differences were less than 1.8 mm and 2.2° for PF and TF translations and rotations. The whole joint FE simulator described in this study can be applied to investigate a wide range of clinical and research questions.
    Journal of biomechanics 12/2011; 45(3):474-83. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evaluating total knee replacement kinematics and contact pressure distributions is an important element of preclinical assessment of implant designs. Although physical testing is essential in the evaluation process, validated computational models can augment these experiments and efficiently evaluate perturbations of the design or surgical variables. The objective of the present study was to perform an initial kinematic verification of a dynamic finite element model of the Kansas knee simulator by comparing predicted tibio- and patellofemoral kinematics with experimental measurements during force-controlled gait simulation. A current semiconstrained, cruciate-retaining, fixed-bearing implant mounted in aluminum fixtures was utilized. An explicit finite element model of the simulator was developed from measured physical properties of the machine, and loading conditions were created from the measured experimental feedback data. The explicit finite element model allows both rigid body and fully deformable solutions to be chosen based on the application of interest. Six degrees-of-freedom kinematics were compared for both tibio- and patellofemoral joints during gait loading, with an average root mean square (rms) translational error of 1.1 mm and rotational rms error of 1.3 deg. Model sensitivity to interface friction and damping present in the experimental joints was also evaluated and served as a secondary goal of this paper. Modifying the metal-polyethylene coefficient of friction from 0.1 to 0.01 varied the patellar flexion-extension and tibiofemoral anterior-posterior predictions by 7 deg and 2 mm, respectively, while other kinematic outputs were largely insensitive.
    Journal of Biomechanical Engineering 08/2010; 132(8):081010. · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Verified computational models represent an efficient method for studying the relationship between articular geometry, soft-tissue constraint, and patellofemoral (PF) mechanics. The current study was performed to evaluate an explicit finite element (FE) modeling approach for predicting PF kinematics in the natural and implanted knee. Experimental three-dimensional kinematic data were collected on four healthy cadaver specimens in their natural state and after total knee replacement in the Kansas knee simulator during a simulated deep knee bend activity. Specimen-specific FE models were created from medical images and CAD implant geometry, and included soft-tissue structures representing medial-lateral PF ligaments and the quadriceps tendon. Measured quadriceps loads and prescribed tibiofemoral kinematics were used to predict dynamic kinematics of an isolated PF joint between 10 degrees and 110 degrees femoral flexion. Model sensitivity analyses were performed to determine the effect of rigid or deformable patellar representations and perturbed PF ligament mechanical properties (pre-tension and stiffness) on model predictions and computational efficiency. Predicted PF kinematics from the deformable analyses showed average root mean square (RMS) differences for the natural and implanted states of less than 3.1 degrees and 1.7 mm for all rotations and translations. Kinematic predictions with rigid bodies increased average RMS values slightly to 3.7 degrees and 1.9 mm with a five-fold decrease in computational time. Two-fold increases and decreases in PF ligament initial strain and linear stiffness were found to most adversely affect kinematic predictions for flexion, internal-external tilt and inferior-superior translation in both natural and implanted states. The verified models could be used to further investigate the effects of component alignment or soft-tissue variability on natural and implant PF mechanics.
    Journal of biomechanics 09/2009; 42(14):2341-8. · 2.66 Impact Factor
  • Chadd Clary, Kevin Dodd, Lorin Maletsky
    Journal of Biomechanics - J BIOMECH. 01/2008; 41.
  • Medicine and Science in Sports and Exercise - MED SCI SPORT EXERCISE. 01/2006; 38.
  • Source
    Chadd W. Clary
    [Show abstract] [Hide abstract]
    ABSTRACT: With the advancement of computational models of the knee, the opportunity exists to utilize patient-specific computational models of the knee intra-operatively to assist surgeons. A critical component for evaluation of whole knee mechanics is configuration of the soft tissue ligament structures surrounding the knee. The overarching purpose of the current research was to develop a unique methodology, utilizing both experimental and computational techniques, for efficient development of patient-specific ligament constraint model. To this end, an experimental method to manually assess knee laxity was developed, and used to evaluate changes in knee laxity after total knee replacement in eight cadaveric specimens. A computational model of ligament constraint was developed to complement the knee laxity data collected during the experimental protocol. A sensitivity study performed on the model identified the most critical ligament parameters affecting knee laxity. Subsequently, these ligament parameters were optimized using the simulated annealing algorithm to minimize the difference between the model predicted knee laxity and the experimentally observed knee laxity for four cadaveric specimens. The optimized ligament parameters were used to predict knee kinematics during an experimental assessment in a quasi-static knee loading rig. Knee kinematic predictions using the optimized ligament parameters were compared to predictions using previously published ligament parameters, and subsequently reduced the RMS difference between the predictions and the experimental kinematics by more than 50% for knee rotations.