C. D. Wilson

University of Massachusetts Amherst, Amherst Center, Massachusetts, United States

Are you C. D. Wilson?

Claim your profile

Publications (128)328.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present SCUBA-2 450\mu m and 850\mu m observations of the Serpens MWC 297 region, part of the JCMT Gould Belt Survey of nearby star-forming regions. Simulations suggest that radiative feedback influences the star-formation process and we investigate observational evidence for this by constructing temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two component model of the JCMT beam for a fixed dust opacity spectral index of beta = 1.8. Within 40 of the B1.5Ve Herbig star MWC 297, the submillimetre fluxes are contaminated by free-free emission with a spectral index of 1.03\pm0.02, consistent with an ultra-compact HII region and polar winds/jets. Contamination accounts for 73\pm5 per cent and 82\pm4 per cent of peak flux at 450\mu m and 850\mu m respectively. The residual thermal disk of the star is almost undetectable at these wavelengths. Young Stellar Objects are confirmed where SCUBA-2 850\mu m clumps identified by the fellwalker algorithm coincide with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol to classify nine YSOs with masses 0.09 to 5.1 M\odot. We find two Class 0, one Class 0/I, three Class I and three Class II sources. The mean temperature is 15\pm2K for the nine YSOs and 32\pm4K for the 14 starless clumps. We observe a starless clump with an abnormally high mean temperature of 46\pm2K and conclude that it is radiatively heated by the star MWC 297. Jeans stability provides evidence that radiative heating by the star MWC 297 may be suppressing clump collapse.
    12/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in the nearby edge-on spiral galaxy, NGC 891: [CII] 158 $\mu$m, [NII] 122, 205 $\mu$m, [OI] 63, 145 $\mu$m, and [OIII] 88 $\mu$m. We find that the photoelectric heating efficiency of the gas, traced via the ([CII]+[OII]63)/$F_{\mathrm{TIR}}$ ratio, varies from a mean of 3.5$\times$10$^{-3}$ in the centre up to 8$\times$10$^{-3}$ at increasing radial and vertical distances in the disc. A decrease in ([CII]+[OII]63)/$F_{\mathrm{TIR}}$ but constant ([CII]+[OI]63)/$F_{\mathrm{PAH}}$ with increasing FIR colour suggests that polycyclic aromatic hydrocarbons (PAHs) may become important for gas heating in the central regions. We compare the observed flux of the FIR cooling lines and total IR emission with the predicted flux from a PDR model to determine the gas density, surface temperature and the strength of the incident far-ultraviolet (FUV) radiation field, $G_{0}$. Resolving details on physical scales of ~0.6 kpc, a pixel-by-pixel analysis reveals that the majority of the PDRs in NGC 891's disc have hydrogen densities of 1 < log ($n$/cm$^{-3}$) < 3.5 experiencing an incident FUV radiation field with strengths of 1.7 < log $G_0$ < 3. Although these values we derive for most of the disc are consistent with the gas properties found in PDRs in the spiral arms and inter-arm regions of M51, observed radial trends in $n$ and $G_0$ are shown to be sensitive to varying optical thickness in the lines, demonstrating the importance of accurately accounting for optical depth effects when interpreting observations of high inclination systems. With an empirical relationship between the MIPS 24 $\mu$m and [NII] 205 $\mu$m emission, we estimate an enhancement of the FUV radiation field strength in the far north-eastern side of the disc.
    10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the newly available SPIRE images at 250 and 500 micron from Herschel Space Observatory, we study quantitative correlations over a sub-kpc scale among three distinct emission components in the interstellar medium of the nearby spiral galaxy M 81 (NGC 3031): (a) $I_{8}$ or $I_{24}$, the surface brightness of the mid-infrared emission observed in the Spitzer IRAC 8 or MIPS 24 micron band, with $I_8$ and $I_{24}$ being dominated by the emissions from Polycyclic Aromatic Hydrocarbons (PAHs) and very small grains (VSGs) of dust, respectively; (b) $I_{500}$, that of the cold dust continuum emission in the Herschel SPIRE 500 micron band, dominated by the emission from large dust grains heated by evolved stars, and (c) $I_{{\rm H}\alpha}$, a nominal surface brightness of the H$\alpha$ line emission, from gas ionized by newly formed massive stars. The results from our correlation study, free from any assumption on or modeling of dust emissivity law or dust temperatures, present solid evidence for significant heating of PAHs and VSGs by evolved stars. In the case of M 81, about 67% (48%) of the 8 micron (24 micron) emission derives its heating from evolved stars, with the remainder attributed to radiation heating associated with ionizing stars.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical conditions of the interstellar medium in galaxies are closely linked to the ambient radiation field and the heating of dust grains. In order to characterize dust properties in galaxies over a wide range of physical conditions, we present here the radial surface brightness profiles of the entire sample of 61 galaxies from Key Insights into Nearby Galaxies: Far-Infrared Survey with Herschel (KINGFISH). The main goal of our work is the characterization of the grain emissivities, dust temperatures, and interstellar radiation fields responsible for heating the dust. After fitting the dust and stellar radial profiles with exponential functions, we fit the far-infrared spectral energy distribution (SED) in each annular region with single-temperature modified black bodies using both variable (MBBV) and fixed (MBBF) emissivity indices beta, as well as with physically motivated dust models. Results show that while most SED parameters decrease with radius, the emissivity index beta also decreases with radius in some galaxies, but in others is increasing, or rising in the inner regions and falling in the outer ones. Despite the fixed grain emissivity (average beta~ 2.1) of the physically-motivated models, they are well able to accommodate flat spectral slopes with beta<= 1. We find that flatter slopes (beta<= 1.5) are associated with cooler temperatures, contrary to what would be expected from the usual Tdust-beta degeneracy. This trend is related to variations in Umin since beta and Umin are very closely linked over the entire range in Umin sampled by the KINGFISH galaxies: low Umin is associated with flat beta<=1. Both these results strongly suggest that the low apparent \beta values (flat slopes) in MBBV fits are caused by temperature mixing along the line-of-sight, rather than by intrinsic variations in grain properties. Abstract truncated for arXiv.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present new images of Arp 220 from the Atacama Large Millimeter/submillimeter Array with the highest combination of frequency (691 GHz) and resolution (0.''36 × 0.''20) ever obtained for this prototypical ultraluminous infrared galaxy. The western nucleus is revealed to contain warm (200 K) dust that is optically thick (τ434 μm = 5.3), while the eastern nucleus is cooler (80 K) and somewhat less opaque (τ434 μm = 1.7). We derive full width at half-maximum diameters of 76 × ≤ 70 pc and 123 × 79 pc for the western and eastern nucleus, respectively. The two nuclei combined account for ( (calibration) (systematic))% of the total infrared luminosity of Arp 220. The luminosity surface density of the western nucleus ( in units of L ☉ kpc–2) appears sufficiently high to require the presence of an active galactic nucleus (AGN) or a "hot starburst," although the exact value depends sensitively on the brightness distribution adopted for the source. Although the role of any central AGN remains open, the inferred mean gas column densities of (0.6-1.8) × 1025 cm–2 mean that any AGN in Arp 220 must be Compton-thick.
    The Astrophysical Journal Letters 06/2014; 789(2):L36. · 6.35 Impact Factor
  • Source
    G. Natale, K. Foyle, C. D. Wilson, N. Kuno
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a multiwavelength study of a sample of far-infrared (FIR) sources detected on the Herschel broad--band maps of the nearby galaxy M33. We perform source photometry on the FIR maps as well as mid-infrared (MIR), H$\alpha$, far-ultraviolet and integrated HI and CO line emission maps. By fitting MIR/FIR dust emission spectra, the source dust masses, temperatures and luminosities are inferred. The sources are classified based on their H$\alpha$ morphology (substructured versus not-substructured) and on whether they have a significant CO detection ($S/N>$3$\sigma$). We find that the sources have dust masses in the range 10$^2$-10$^4$~M$_\odot$ and that they present significant differences in their inferred dust/star formation/gas parameters depending on their H$\alpha$ morphology and CO detection classification. The results suggests differences in the evolutionary states or in the number of embedded HII regions between the subsamples. The source background--subtracted dust emission seems to be predominantly powered by local star formation, as indicated by a strong correlation between the dust luminosity and the dust-corrected H$\alpha$ luminosity and the fact that the extrapolated young stellar luminosity is high enough to account for the observed dust emission. Finally, we do not find a strong correlation between the dust-corrected H$\alpha$ luminosity and the dust mass of the sources, consistent with previous results on the breakdown of simple scaling relations at sub-kpc scales. However, the scatter in the relation is significantly reduced by correcting the H$\alpha$ luminosity for the age of the young stellar populations in the star--forming regions.
    Monthly Notices of the Royal Astronomical Society 04/2014; 441(1). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We search for variations in the disk of Centaurus A of the emission from atomic fine structure lines using Herschel PACS and SPIRE spectroscopy. In particular we observe the [C II](158 $\mu$m), [N II](122 and 205 $\mu$m), [O I](63 and 145 $\mu$m) and [O III](88 $\mu$m) lines, which all play an important role in cooling the gas in photo-ionized and photodissociation regions. We determine that the ([C II]+[O I]$_{63}$)/$F_{TIR}$ line ratio, a proxy for the heating efficiency of the gas, shows no significant radial trend across the observed region, in contrast to observations of other nearby galaxies. We determine that 10 - 20% of the observed [C II] emission originates in ionized gas. Comparison between our observations and a PDR model shows that the strength of the far-ultraviolet radiation field, $G_0$, varies between $10^{1.75}$ and $10^{2.75}$ and the hydrogen nucleus density varies between $10^{2.75}$ and $10^{3.75}$ cm$^{-3}$, with no significant radial trend in either property. In the context of the emission line properties of the grand-design spiral galaxy M51 and the elliptical galaxy NGC 4125, the gas in Cen A appears more characteristic of that in typical disk galaxies rather than elliptical galaxies.
    The Astrophysical Journal 04/2014; 787(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the connection between dust and gas in the nearby edge-on spiral galaxy NGC 891. High resolution Herschel PACS and SPIRE 70, 100, 160, 250, 350, and 500 $\mu$m images are combined with JCMT SCUBA 850 $\mu$m observations to trace the far-infrared/submillimetre spectral energy distribution (SED). Maps of the HI 21 cm line and CO(J=3-2) emission trace the atomic and molecular hydrogen gas, respectively. We fit one-component modified blackbody models to the integrated SED, finding a global dust mass of 8.5$\times$10$^{7}$ M$_{\odot}$ and an average temperature of 23$\pm$2 K. We also fit the pixel-by-pixel SEDs to produce maps of the dust mass and temperature. The dust mass distribution correlates with the total stellar population as traced by the 3.6 $\mu$m emission. The derived dust temperature, which ranges from approximately 17 to 24 K, is found to correlate with the 24 $\mu$m emission. Allowing the dust emissivity index to vary, we find an average value of $\beta$ = 1.9$\pm$0.3. We confirm an inverse relation between the dust emissivity spectral index and dust temperature, but do not observe any variation of this relationship with vertical height from the mid-plane of the disk. A comparison of the dust properties with the gaseous components of the ISM reveals strong spatial correlations between the surface mass densities of dust and the molecular hydrogen and total gas surface densities. Observed asymmetries in the dust temperature, and the H$_{2}$-to-dust and total gas-to-dust ratios hint that an enhancement in the star formation rate may be the result of larger quantities of molecular gas available to fuel star formation in the NE compared to the SW. Whilst the asymmetry likely arises from dust obscuration due to the geometry of the line-of-sight projection of the spiral arms, we cannot exclude an enhancement in the star formation rate in the NE side of the disk.
    02/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We model the infrared to submillimeter spectral energy distribution of 11 nearby galaxies of the KINGFISH sample using Spitzer and Herschel data and compare model extrapolations at 870um (using different fitting techniques) with LABOCA 870um observations. We investigate how the differences between predictions and observations vary with model assumptions or environment. At global scales, we find that modified blackbody models using realistic cold emissivity indices (beta_c=2 or 1.5) are able to reproduce the 870um observed emission within the uncertainties for most of the sample. Low values (beta_c<1.3) would be required in NGC0337, NGC1512 and NGC7793. At local scales, we observe a systematic 870um excess when using beta_=2.0. The beta_c=1.5 or the Draine and Li (2007) models can reconcile predictions with observations in part of the disks. Some of the remaining excesses occur towards the centres and can be partly or fully accounted for by non-dust contributions such as CO(3-2) or, to a lesser extent, free-free or synchrotron emission. In three non-barred galaxies, the remaining excesses rather occur in the disk outskirts. This could be a sign of a flattening of the submm slope (and decrease of the effective emissivity index) with radius in these objects.
    01/2014; 439(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the far infrared spectrum of NGC 1266, a S0 galaxy that contains a massive reservoir of highly excited molecular gas. Using the SPIRE-FTS, we detect the $^{12}$CO ladder up to J=(13-12), [C I] and [N II] lines, and also strong water lines more characteristic of UltraLuminous IR Galaxies (ULIRGs). The 12CO line emission is modeled with a combination of a low-velocity C-shock and a PDR. Shocks are required to produce the H2O and most of the high-J 12CO emission. Despite having an infrared luminosity thirty times less than a typical ULIRG, the spectral characteristics and physical conditions of the ISM of NGC 1266 closely resemble those of ULIRGs, which often harbor strong shocks and large-scale outflows.
    The Astrophysical Journal Letters 11/2013; 779(2). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present 12CO J = 3→2 maps of NGC 2976 and NGC 3351 obtained with the James Clerk Maxwell Telescope (JCMT), both early targets of the JCMT Nearby Galaxy Legacy Survey (NGLS). We combine the present observations with 12CO J = 1→0 data and find that the computed 12CO J = 3→2 to 12CO J = 1→0 line ratio (R31) agrees with values measured in other NGLS field galaxies. We compute the MH2 value and find that it is robust against the value of R31 used. Using H I data from The H I Nearby Galaxy Survey, we find a tight correlation between the surface density of H2 and star formation rate density for NGC 3351 when 12CO J = 3→2 data are used. Finally, we compare the 12CO J = 3→2 intensity with the polycyclic aromatic hydrocarbon (PAH) 8 μm surface brightness and find a good correlation in the high surface brightness regions. We extend this study to include all 25 Spitzer Infrared Nearby Galaxies Survey galaxies within the NGLS sample and find a tight correlation at large spatial scales. We suggest that both PAH 8 μm and 12CO J = 3→2 are likely to originate in regions of active star formation.
    Monthly Notices of the Royal Astronomical Society 11/2013; 436(1):921-933. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a ˜1″ (100 pc) resolution CO(3–2) map of the Antennae galaxies obtained with the Submillimeter Array. We find that only < 30% of the GMAs spatially coincides with the optically detected star clusters, suggesting that the bulk of the CO (3–2) emission traces the regions with very recent or near future star formation activity. A high CO (3–2)/(1–0) ratio is seen in both nuclei and the southern complexes in the overlap region. Higher radiation field associated with intense star formation can account for the nucleus of NGC 4038 and the overlap region, but the nuclear region of NGC 4039 show relatively little star formation or AGN activities and cannot easily explained. We show kinematical evidence that the high line ratio in NGC 4039 is possibly caused by gas inflow into the counter-rotating central disk.
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and HI emission. Depending on the dust emissivity, the total dust mass is 2-5x10^6 Msun. While the neutral gas-to-dust mass ratio is extremely low (< 12-30), including the ionized gas traced by [CII] emission raises this limit to < 39-100. The dust emission follows a similar r^{1/4} profile to the stellar light and the dust to stellar mass ratio is towards the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures >= 10^4 K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.
    The Astrophysical Journal Letters 09/2013; 776(2). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new photometric data from our Herschel Key Programme, the Dwarf Galaxy Survey (DGS), dedicated to the observation of the gas and dust in 48 low-metallicity environments. They were observed with PACS and SPIRE onboard Herschel at 70,100,160,250,350, and 500 microns. We focus on a systematic comparison of the derived FIR properties (FIR luminosity, dust mass, dust temperature and emissivity index) with more metal-rich galaxies and investigate the detection of a potential submm excess. The data reduction method is adapted for each galaxy to derive the most reliable photometry from the final maps. PACS flux densities are compared with the MIPS 70 and 160 microns bands. We use colour-colour diagrams and modified blackbody fitting procedures to determine the dust properties of the DGS galaxies. We also include galaxies from the Herschel KINGFISH sample, containing more metal-rich environments, totalling 109 galaxies. The location of the DGS galaxies on Herschel colour-colour diagrams highlights the differences in global environments of low-metallicity galaxies. The dust in DGS galaxies is generally warmer than in KINGFISH galaxies (T_DGS~32 K, T_KINGFISH~23 K). The emissivity index, beta, is ~1.7 in the DGS, but metallicity does not make a strong effect on beta. The dust-to-stellar mass ratio is lower in low-metallicity galaxies: M_dust/M_star~0.02% for the DGS vs 0.1% for KINGFISH. Per unit dust mass, dwarf galaxies emit ~6 times more in the FIR than higher metallicity galaxies. Out of the 22 DGS galaxies detected at 500 micron, 41% present an excess in the submm not explained by our dust SED model. The excess mainly appears in lower metallicity galaxies (12+log(O/H) < 8.3), and the strongest excesses are detected in the most metal-poor galaxies. We stress the need for observations longwards of the Herschel wavelengths to detect any submm excess appearing beyond 500 micron.
    Astronomy and Astrophysics 09/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in M51, [CII](158 \mu m), [NII](122 & 205 \mu m), [OI](63 and 145 \mu m) and [OIII](88 \mu m). We compare the observed flux of these lines with the predicted flux from a photon dominated region model to determine characteristics of the cold gas such as density, temperature and the far-ultraviolet radiation field, G_0, resolving details on physical scales of roughly 600 pc. We find an average [CII]/F_TIR of 4 x 10^{-3}, in agreement with previous studies of other galaxies. A pixel-by-pixel analysis of four distinct regions of M51 shows a radially decreasing trend in both the far-ultraviolet (FUV) radiation field, G_0 and the hydrogen density, n, peaking in the nucleus of the galaxy, then falling off out to the arm and interarm regions. We see for the first time that the FUV flux and gas density are similar in the differing environments of the arm and interarm regions, suggesting that the inherent physical properties of the molecular clouds in both regions are essentially the same.
    The Astrophysical Journal 08/2013; 776(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate star formation and dust heating in the compact far-infrared (FIR) bright sources detected in the Herschel maps of M83. We use the source extraction code GETSOURCES to detect and extract sources in the FIR, as well as their photometry in the mid-infrared and Hα. By performing infrared spectral energy distribution fitting and applying an Hα-based star formation rate (SFR) calibration, we derive the dust masses and temperatures, SFRs, gas masses and star formation efficiencies (SFEs). The detected sources lie exclusively on the spiral arms and represent giant molecular associations, with gas masses and sizes of 106-108 M⊙ and 200-300 pc, respectively. The inferred parameters show little to no radial dependence and there is only a weak correlation between the SFRs and gas masses, which suggests that more massive clouds are less efficient at forming stars. Dust heating is mainly due to local star formation. However, although the sources are not optically thick, the total intrinsic young stellar population luminosity can almost completely account for the dust luminosity. This suggests that other radiation sources also contribute to the dust heating and approximately compensate for the unabsorbed fraction of UV light.
    Monthly Notices of the Royal Astronomical Society 07/2013; 432(3):2182-2207. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first overview of the Herschel observations of the nearby high-mass star-forming region NGC 7538, taken as part of the Herschel imaging study of OB Young Stellar objects (HOBYS) Key Programme. These PACS and SPIRE maps cover an approximate area of one square degree at five submillimeter and far-infrared wavebands. We have identified 780 dense sources and classified 224 of those. With the intention of investigating the existence of cold massive starless or class 0-like clumps that would have the potential to form intermediate- to high-mass stars, we further isolate 13 clumps as the most likely candidates for followup studies. These 13 clumps have masses in excess of 40 M_sun and temperatures below 15 K. They range in size from 0.4 pc to 2.5 pc and have densities between 3x10^3 cm^-3 to 4x10^4 cm^-3. Spectral energy distributions are then used to characterize their energetics and evolutionary state through a luminosity-mass diagram. NGC 7538 has a highly filamentary structure, previously unseen in the dust continuum of existing submillimeter surveys. We report the most complete imaging to date of a large, evacuated ring of material in NGC 7538 which is bordered by many cool sources.
    The Astrophysical Journal 06/2013; 773(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Dwarf Galaxy Survey (DGS) program is studying low-metallicity galaxies using 230h of far-infrared (FIR) and submillimetre (submm) photometric and spectroscopic observations of the Herschel Space Observatory and draws to this a rich database of a wide range of wavelengths tracing the dust, gas and stars. This sample of 50 galaxies includes the largest metallicity range achievable in the local Universe including the lowest metallicity (Z) galaxies, 1/50 Zsun, and spans 4 orders of magnitude in star formation rates. The survey is designed to get a handle on the physics of the interstellar medium (ISM) of low metallicity dwarf galaxies, especially on their dust and gas properties and the ISM heating and cooling processes. The DGS produces PACS and SPIRE maps of low-metallicity galaxies observed at 70, 100, 160, 250, 350, and 500 mic with the highest sensitivity achievable to date in the FIR and submm. The FIR fine-structure lines, [CII] 158 mic, [OI] 63 mic, [OI] 145 mic, [OIII] 88 mic, [NIII] 57 mic and [NII] 122 and 205 mic have also been observed with the aim of studying the gas cooling in the neutral and ionized phases. The SPIRE FTS observations include many CO lines (J=4-3 to J=13-12), [NII] 205 mic and [CI] lines at 370 and 609 mic. This paper describes the sample selection and global properties of the galaxies, the observing strategy as well as the vast ancillary database available to complement the Herschel observations. The scientific potential of the full DGS survey is described with some example results included.
    Publications of the Astronomical Society of the Pacific 05/2013; 125(928). · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: [abridged] Aims. The aim of the present paper is to provide new and more detailed relations at the kpc scale between the gas surface density and the face-on optical depth directly calibrated on galaxies, in order to compute the attenuation not only for semi-analytic models but also observationally as new and upcoming radio observatories are able to trace gas ever farther in the Universe. Methods. We have selected a sample of 4 nearby resolved galaxies and a sample of 27 unresolved galaxies from the Herschel Reference Survey and the Very Nearby Galaxies Survey, for which we have a large set of multi-wavelength data from the FUV to the FIR including metallicity gradients for resolved galaxies, along with radio HI and CO observations. For each pixel in resolved galaxies and for each galaxy in the unresolved sample, we compute the face-on optical depth from the attenuation determined with the CIGALE SED fitting code and an assumed geometry. We determine the gas surface density from HI and CO observations with a metallicity-dependent XCO factor. Results. We provide new, simple to use, relations to determine the face-on optical depth from the gas surface density, taking the metallicity into account, which proves to be crucial for a proper estimate. The method used to determine the gas surface density or the face-on optical depth has little impact on the relations except for galaxies that have an inclination over 50d. Finally, we provide detailed instructions on how to compute the attenuation practically from the gas surface density taking into account possible information on the metallicity. Conclusions. Examination of the influence of these new relations on simulated FUV and IR luminosity functions shows a clear impact compared to older oft-used relations, which in turn could affect the conclusions drawn from studies based on large scale cosmological simulations.
    Astronomy and Astrophysics 03/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We derive the distribution of the synchrotron spectral index across NGC6946 and investigate the correlation between the radio continuum (synchrotron) and far-infrared (FIR) emission using the KINGFISH Herschel PACS and SPIRE data. The radio--FIR correlation is studied as a function of star formation rate, magnetic field strength, radiation field strength, and the total gas surface brightness. The synchrotron emission follows both star-forming regions and the so-called magnetic arms present in the inter-arm regions. The synchrotron spectral index is steepest along the magnetic arms ($\alpha_n \sim 1$), while it is flat in places of giant H{\sc ii} regions and in the center of the galaxy ($\alpha_n \sim 0.6-0.7$). The map of $\alpha_n$ provides an observational evidence for aging and energy loss of cosmic ray electrons propagating in the disk of the galaxy. Variations in the synchrotron--FIR correlation across the galaxy are shown to be a function of both star formation and magnetic fields. We find that the synchrotron emission correlates better with cold rather than with warm dust emission, when the interstellar radiation field is the main heating source of dust. The synchrotron--FIR correlation suggests a coupling between the magnetic field and the gas density. NGC6946 shows a power-law behavior between the total (turbulent) magnetic field strength B and the star formation rate surface density $\Sigma_{\rm SFR}$ with an index of 0.14\,(0.16)$\pm$0.01. This indicates an efficient production of the turbulent magnetic field with the increasing gas turbulence expected in actively star forming regions. The scale-by-scale analysis of the synchrotron--FIR correlation indicates that the ISM affects the propagation of old/diffused cosmic ray electrons, resulting in a diffusion coefficient of $D_0=4.6\times 10^{28}$\,cm$^2$\,s$^{-1}$ for 2.2\,GeV CREs.
    Astronomy and Astrophysics 01/2013; · 5.08 Impact Factor

Publication Stats

1k Citations
328.75 Total Impact Points

Institutions

  • 2014
    • University of Massachusetts Amherst
      • Department of Astronomy
      Amherst Center, Massachusetts, United States
  • 1996–2014
    • McMaster University
      • Department of Physics and Astronomy
      Hamilton, Ontario, Canada
  • 2013
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
  • 2012
    • Ghent University
      Gand, Flanders, Belgium
  • 2011
    • University of Santiago, Chile
      • Departamento de Economía
      CiudadSantiago, Santiago, Chile
  • 1988–2003
    • California Institute of Technology
      • Department of Astronomy
      Pasadena, CA, United States