Christian A Combs

National Institutes of Health, Maryland, United States

Are you Christian A Combs?

Claim your profile

Publications (37)192.01 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface.
    Biology. 01/2014; 3(4):781-800.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that GFP-tagged human ABCG1 on the plasma membrane (PM) and in late endosomes (LE) mobilizes sterol on both sides of the membrane lipid bilayer, thereby increasing cellular cholesterol efflux to lipid surfaces. In the present study, we examined ABCG1-induced changes in membrane cholesterol distribution, organization, and mobility. ABCG1-GFP expression increased the amount of mobile, non-sphingomyelin(SM)-associated cholesterol at the PM and LE, but not the amount of SM-associated-cholesterol or SM. ABCG1-mobilized non-SM-associated-cholesterol rapidly cycled between the PM and LE and effluxed from the PM to extracellular acceptors, or, relocated to intracellular sites of esterification. ABCG1 increased detergent-soluble pools of PM and LE cholesterol, generated detergent-resistant, non-SM-associated PM cholesterol, and increased resistance to both amphotericin B-induced (cholesterol-mediated) and lysenin-induced (SM-mediated) cytolysis, consistent with altered organization of both PM cholesterol and SM. ABCG1 itself resided in detergent-soluble membrane domains. We propose that PM and LE ABCG1 residing at the phase boundary between ordered (Lo) and disordered (Ld) membrane lipid domains alters SM and cholesterol organization thereby increasing cholesterol flux between Lo and Ld, and hence, the amount of cholesterol available for removal by acceptors on either side of the membrane bilayer for either efflux or esterification.
    Biology. 01/2014; 3(4):866-891.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a compact, non-contact design for a total emission detection (c-TED) system for intra-vital multiphoton imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), whereas murine skeletal muscle and rat kidney showed gains of over two and just under twofold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a twofold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers, enabled by greater light collection efficiency, yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multiphoton imaging methods is discussed.
    Journal of Microscopy 11/2013; · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial secretion of von Willebrand factor (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adhesion to the injured vessel wall. Here we demonstrate that WPBs are often found near or within autophagosomes and that endothelial autophagosomes contain abundant VWF protein. Pharmacological inhibitors of autophagy or knockdown of the essential autophagy genes Atg5 or Atg7 inhibits the in vitro secretion of VWF. Furthermore, although mice with endothelial-specific deletion of Atg7 have normal vessel architecture and capillary density, they exhibit impaired epinephrine-stimulated VWF release, reduced levels of high-molecular weight VWF multimers and a corresponding prolongation of bleeding times. Endothelial-specific deletion of Atg5 or pharmacological inhibition of autophagic flux results in a similar in vivo alteration of hemostasis. Thus, autophagy regulates endothelial VWF secretion, and transient pharmacological inhibition of autophagic flux may be a useful strategy to prevent thrombotic events.
    Nature medicine 09/2013; · 27.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As nutrient-sensing nuclear/cytosolic acetylation mediates cellular autophagy, we investigated whether mitochondrial acetylation modulates mitochondrial autophagy. Knockdown of GCN5L1, a component of the mitochondrial acetyltransferase machinery, diminished mitochondrial protein acetylation and augmented mitochondrial enrichment of autophagy mediators. This program was disrupted by Sirt3 knockdown. Chronic GCN5L1 depletion increased mitochondrial turnover and reduced mitochondrial protein content/mass. In parallel, mitochondria showed blunted respiration and enhanced 'stress-resilience'. Genetic disruption of autophagy mediators Atg5 and p62, as well as GCN5L1 reconstitution, abolished deacetylation-induced mitochondrial autophagy. Interestingly, this program is independent of the mitophagy E3-ligase Parkin. Together these data support that deacetylation of mitochondrial proteins initiate mitochondrial autophagy in a canonical autophagy mediator-dependent program and shows that modulation of this regulatory program has ameliorative mitochondrial homeostatic effects.
    Journal of Cell Science 09/2013; · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially. In addition to dual-labeled, whole fixed cells, we imaged GFP-labeled microtubules in live transgenic zebrafish embryos at depths >45 μm. We captured dynamic changes in the zebrafish lateral line primordium and observed interactions between myosin IIA and F-actin in cells encapsulated in collagen gels, obtaining two-color 4D super-resolution data sets spanning tens of time points and minutes without apparent phototoxicity. Our method uses commercially available parts and open-source software and is simpler than existing SIM implementations, allowing easy integration with wide-field microscopes.
    Nature Methods 05/2012; 9(7):749-54. · 23.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SummaryA benefit of multiphoton fluorescence microscopy is the inherent optical sectioning that occurs during excitation at the diffraction-limited spot. The scanned collection of fluorescence emission is incoherent; that is, no real image needs to be formed on the detector plane. The nearly isotropic emission of fluorescence excited at the focal spot allows for new detection schemes that efficiently funnel all attainable photons to detector(s). We previously showed [Combs, C.A., et al. (2007) Optimization of multiphoton excitation microscopy by total emission detection using a parabolic light reflector. J. Microsc. 228, 330–337] that parabolic mirrors and condensers could be combined to collect the totality of solid angle around the excitation spot for tissue blocks, leading to ∼8-fold signal gain. Using a similar approach, we have developed an in vivo total emission detection (epiTED) instrument modified to make noncontact images from outside of living tissue. Simulations suggest that a ∼4-fold enhancement may be possible (much larger with lower NA objectives than the 0.95 NA used here) with this approach, depending on objective characteristics, imaging depth and the characteristics of the sample being imaged. In our initial prototype, 2-fold improvements were demonstrated in the mouse brain and skeletal muscle as well as the rat kidney, using a variety of fluorophores and no compromise of spatial resolution. These results show this epiTED prototype effectively doubles emission signal in vivo; thus, it will maintain the image signal-to-noise ratio at two times the scan rate or enable full scan rate at approximately 30% reduced laser power (to minimize photo-damage).
    Journal of Microscopy 01/2011; 241(2):153 - 161. · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To better define the nature of the transient neutropenia shortly following granulocyte-colony stimulating factor (G-CSF) administration. To evaluate the disappearance of neutrophils, we investigated neutrophil trafficking. Ratios of neutrophil number to background cellularity for C57BL/6 LysM-EGFP knock-in mice and rhesus macaques were determined in the lung, liver, spleen, and kidney after G-CSF administration. For the C57BL/6 LysM-EGFP knock-in mice, the enhanced green fluorescent protein expression (EGFP(+)) cells increased in the lung and spleen within 15 minutes of administering 50 μg/kg G-CSF subcutaneously, and continued to increase in the lung and spleen from 15 minutes to 30 minutes. At 240 minutes, the pulmonary infiltrate declined to a level comparable to the level at 15 minutes, while in the spleen EGFP(+) cells continued to increase. For rhesus macaques, CD18(+) cells also significantly increased in the lung 30 minutes after administration of 10 μg/kg G-CSF subcutaneously compared to the control level. These results suggest that the transient neutropenia following G-CSF administration in the mouse and nonhuman primate is associated with an accumulation of neutrophils within pulmonary and splenic vasculature.
    Experimental hematology 11/2010; 39(2):142-50. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygen is not only required for oxidative phosphorylation but also serves as the essential substrate for the formation of reactive oxygen species (ROS), which is implicated in ageing and tumorigenesis. Although the mitochondrion is known for its bioenergetic function, the symbiotic theory originally proposed that it provided protection against the toxicity of increasing oxygen in the primordial atmosphere. Using human cells lacking Synthesis of Cytochrome c Oxidase 2 (SCO2-/-), we have tested the oxygen toxicity hypothesis. These cells are oxidative phosphorylation defective and glycolysis dependent; they exhibit increased viability under hypoxia and feature an inverted growth response to oxygen compared with wild-type cells. SCO2-/- cells have increased intracellular oxygen and nicotinamide adenine dinucleotide (NADH) levels, which result in increased ROS and oxidative DNA damage. Using this isogenic cell line, we have revealed the genotoxicity of ambient oxygen. Our study highlights the importance of mitochondrial respiration both for bioenergetic benefits and for maintaining genomic stability in an oxygen-rich environment.
    Nature Communications 04/2010; 1:5. · 10.74 Impact Factor
  • Source
    Christian A Combs
    [Show abstract] [Hide abstract]
    ABSTRACT: The field of fluorescence microscopy is rapidly growing, providing ever increasing imaging capabilities for cell and neurobiologists. Over the last decade, many new technologies and techniques have been developed which allow for deeper, faster, or higher resolution imaging. For the non-expert microscopist, it can be difficult to match the best imaging technique to the biological question to be examined. Picking the right technique requires a basic understanding of the underlying imaging physics for each technique, as well as an informed comparison and balancing of competing imaging properties in the context of the sample to be imaged. This unit provides concise descriptions of a range of commercially available imaging techniques and provides a tabular guide to choosing among them. Techniques covered include structured light, confocal, total internal reflection fluorescence (TIRF), two-photon, and stimulated emission depletion (STED) microscopy.
    Current protocols in neuroscience / editorial board, Jacqueline N. Crawley ... [et al.] 01/2010; Chapter 2:Unit2.1.
  • Source
    Biophysical Journal 01/2010; 98(3). · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Initial IgE-dependent signaling events are associated with detergent-resistant membrane microdomains. Following Ag stimulation, the IgE-receptor (Fc(epsilon)RI ) accumulates within these domains. This facilitates the phosphorylation of Fc(epsilon)RI subunits by the Src kinase, Lyn, and the interaction with adaptor proteins, such as the linker for activation of T cells. Among the phospholipases (PL) subsequently activated, PLD is of interest because of its presence in lipid microdomains and the possibility that its product, phosphatidic acid, may regulate signal transduction and membrane trafficking. We find that in Ag-stimulated RBL-2H3 mast cells, the association of Fc(epsilon)RI with detergent-resistant membrane fractions is inhibited by 1-butanol, which subverts production of phosphatidic acid to the biologically inert phosphatidylbutanol. Furthermore, the knockdown of PLD2, and to a lesser extent PLD1 with small inhibitory RNAs, also suppressed the accumulation of Fc(epsilon)RI and Lyn in these fractions as well as the phosphorylation of Src kinases, Fc(epsilon)RI , linker for activation of T cells, and degranulation. These effects were accompanied by changes in distribution of the lipid microdomain component, ganglioside 1, in the plasma membrane as determined by binding of fluorescent-tagged cholera toxin B subunit and confocal microscopy in live cells. Collectively, these findings suggest that PLD activity plays an important role in promoting IgE-dependent signaling events within lipid microdomains in mast cells.
    The Journal of Immunology 10/2009; 183(8):5104-12. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence lifetime imaging microscopy is a technique in which the fluorescence lifetime(s) of a fluorophore is measured at each spatially resolvable element of a microscope image. Imaging of fluorescence lifetimes enables biochemical reactions to be followed at each microscopically resolvable location within the cell. FLIM has thus become very useful for biomedical tissue imaging. Global analysis [1] is a method of recovering fluorescence decay parameters from either time-resolved emission spectra to yield Decay-Associated Spectra [2], or equivalently, from FLIM datasets to yield Decay-Associated Images. Global analysis offers a sensitive and non-invasive probe of metabolic state of intracellular molecules such as NADH. Using prior information, such as the spatial invariance of the lifetime of each fluorescent species in the image, to better refine the relevant parameters, global analysis can recover lifetimes and amplitudes more accurately than traditional pixel-by-pixel analysis. Here, we explain a method to analyze FLIM data so that more accurate lifetimes and DAIs can be computed in a reasonable time. This approach involves coupling an iterative global analysis with linear algebraic operations. It can be successfully applied to image, e.g. metabolic states of live cardiac myocytes, etc.
    Proc SPIE 02/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have constructed a device that maximizes the probability of collecting all of the scattered and ballistic light isotropically generated at the focal spot of multiphoton excited emissions (MPE) to optimize the signal-to-noise ratio (SNR) for micro-imaging. This was accomplished by optically coupling a parabolic reflector (that surrounds the sample and top of the objective) to a pair of collimating lenses (above the sample) that redirects emitted light to a separate detector. These additional optics, combined with the objective, allow the total emission detection (TED) condition to be approached. Numerical simulations suggest an approximately 10-fold improvement in SNR with TED. Comparisons between the objective detection and TED reveal an enhancement of 8.9 in SNR (77% of predicted) for GFP-labelled brain slices and similar results for fluorescent beads. This increase in SNR can be used to improve time resolution, reduce laser power requirements/photodynamic damage, and, in certain cases, detection depth, for MPE imaging techniques.
    Journal of Microscopy 01/2008; 228(Pt 3):330-7. · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two-photon, two-color fluorescence cross-correlation spectroscopy (TPTCFCCS) was used to directly detect ligand-dependent interaction between an eCFP-fusion of the androgen receptor (eCFP-AR) and an eYFP fusion of the nuclear receptor co-activator, Tif2 (eYFP-Tif2) in live cells. As expected, these two proteins were co-localized in the nucleus in the presence of ligand. Analysis of the cross-correlation amplitude revealed that AR was on average 81% bound to Tif2 in the presence of agonist, whereas the fractional complex formation decreased to 56% in the presence of antagonist. Residual AR-Tif2 interaction in presence of antagonist is likely mediated by its ligand-independent activation function. These studies demonstrate that using TPTCFCCS it is possible to quantify ligand-dependent interaction of nuclear receptors with co-regulator partners in live cells, making possible a vast array of structure-function studies for these important transcriptional regulators.
    European Biophysics Journal 03/2007; 36(2):153-61. · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence suggests that both human stem cells and mature stromal cells can play an important role in the development and growth of human malignancies. In contrast to these tumor-promoting properties, we observed that in an in vivo model of Kaposi's sarcoma (KS), intravenously (i.v.) injected human mesenchymal stem cells (MSCs) home to sites of tumorigenesis and potently inhibit tumor growth. We further show that human MSCs can inhibit the in vitro activation of the Akt protein kinase within some but not all tumor and primary cell lines. The inhibition of Akt activity requires the MSCs to make direct cell-cell contact and can be inhibited by a neutralizing antibody against E-cadherin. We further demonstrate that in vivo, Akt activation within KS cells is potently down-regulated in areas adjacent to MSC infiltration. Finally, the in vivo tumor-suppressive effects of MSCs correlates with their ability to inhibit target cell Akt activity, and KS tumors engineered to express a constitutively activated Akt construct are no longer sensitive to i.v. MSC administration. These results suggest that in contrast to other stem cells or normal stromal cells, MSCs possess intrinsic antineoplastic properties and that this stem cell population might be of particular utility for treating those human malignancies characterized by dysregulated Akt.
    Journal of Experimental Medicine 06/2006; 203(5):1235-47. · 13.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have determined that mice with a homozygous deletion in the adapter protein p66(shc) have an extended life span and that cells derived from these mice exhibit lower levels of reactive oxygen species. Here we demonstrate that a fraction of p66(shc) localizes to the mitochondria and that p66(shc-/-) fibroblasts have altered mitochondrial energetics. In particular, despite similar cytochrome content, under basal conditions, the oxygen consumption of spontaneously immortalized p66(shc-/-) mouse embryonic fibroblasts were lower than similarly maintained wild type cells. Differences in oxygen consumption were particularly evident under chemically uncoupled conditions, demonstrating that p66(shc-/-) cells have a reduction in both their resting and maximal oxidative capacity. We further demonstrate that reconstitution of p66(shc) expression in p66(shc-/-) cells increases oxygen consumption. The observed defect in oxidative capacity seen in p66(shc-/-) cells is partially offset by augmented levels of aerobic glycolysis. This metabolic switch is manifested by p66(shc-/-) cells exhibiting an increase in lactate production and a stricter requirement for extracellular glucose in order to maintain intracellular ATP levels. In addition, using an in vivo NADH photobleaching technique, we demonstrate that mitochondrial NADH metabolism is reduced in p66(shc-/-) cells. These results demonstrate that p66(shc) regulates mitochondrial oxidative capacity and suggest that p66(shc) may extend life span by repartitioning metabolic energy conversion away from oxidative and toward glycolytic pathways.
    Journal of Biological Chemistry 05/2006; 281(15):10555-60. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The blue autofluorescence (351 nm excitation, 450 nm emission) of single skeletal muscle fibers from Xenopus was characterized to be originating from mitochondrial NAD(P)H on the basis of morphological and functional correlations. This fluorescence signal was used to estimate the oxygen availability to isolated single Xenopus muscle fibers during work level transitions by confocal microscopy. Fibers were stimulated to generate two contractile periods that were only different in the PO2 of the solution perfusing the single fibers (PO2 of 30 or 0-2 Torr; pH = 7.2). During contractions, mean cellular NAD(P)H increased significantly from rest in the low PO2 condition with the core (inner 10%) increasing to a greater extent than the periphery (outer 10%). After the cessation of work, NAD(P)H decreased in a manner consistent with oxygen tensions sufficient to oxidize the surplus NAD(P)H. In contrast, NAD(P)H decreased significantly with work in 30 Torr PO2. However, the rate of NAD(P)H oxidation was slower and significantly increased with the cessation of work in the core of the fiber compared with the peripheral region, consistent with a remaining limitation in oxygen availability. These results suggest that the blue autofluorescence signal in Xenopus skeletal muscle fibers is from mitochondrial NAD(P)H and that the rate of NAD(P)H oxidation within the cell is influenced by extracellular PO2 even at high extracellular PO2 during the contraction cycle. These results also demonstrate that although oxygen availability influences the rate of NAD(P)H oxidation, it does not prevent NAD(P)H from being oxidized through the process of oxidative phosphorylation at the onset of contractions.
    Journal of Applied Physiology 05/2005; 98(4):1420-6. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two-photon excitation fluorescence microscopy (TPEFM) permits the investigation of the topology of intercellular events within living animals. TPEFM was used to monitor the distribution of mitochondrial reduced nicotinamide adenine dinucleotide (NAD(P)H) in murine skeletal muscle in vivo. NAD(P)H fluorescence emission was monitored ( approximately 460 nm) using 710-720 nm excitation. High-resolution TPEFM images were collected up to a depth of 150 microm from the surface of the tibialis anterior muscle. The NAD(P)H fluorescence images revealed subcellular structures consistent with subsarcolemmal, perivascular, intersarcomeric, and paranuclear mitochondria. In vivo fiber typing between IIB and IIA/D fibers was possible using the distribution and content of mitochondria from the NAD(P)H fluorescence signal. The intersarcomeric mitochondria concentrated at the Z-line in the IIB fiber types resulting in a periodic pattern with a spacing of one sarcomere (2.34 +/- 0.17 microm). The primary inner filter effects were nearly equivalent to water, however, the secondary inner filter effects were highly significant and dynamically affected the observed emission frequency and amplitude of the NAD(P)H fluorescence signal. These data demonstrate the feasibility, and highlight the complexity, of using NAD(P)H TPEFM in skeletal muscle to characterize the topology and metabolic function of mitochondria within the living mouse.
    Biophysical Journal 04/2005; 88(3):2165-76. · 3.67 Impact Factor
  • P D Jöbsis, C A Combs, R S Balaban
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of 2,3-dicyanohydroquinone (DCHQ) as an emission ratiometric probe of pH in vitro and in fibroblast cells was evaluated using two-photon excitation fluorescence microscopy (TPEFM). In addition, methods for spectrally calibrating the Zeiss LSM510 META spectroscopy system for TPEFM were also developed. The emissions of both the acid and base forms of DCHQ were detectable when using an 800-nm excitation in TPEFM, thereby allowing ratiometric determination of pH. These data suggest that, in contrast to most other emission ratiometric probes, both acid and base forms of DCHQ have similar two-photon cross-sectional areas at 800 nm. Acid (maximum at approximately 457 nm) and base (maximum at approximately 489 nm) DCHQ TPEFM emission spectra were similar to previously reported one-photon excitation emission spectra. Calibration curves for pH were successfully constructed using the ratio of DCHQ emission difference maxima at 460 nm and 512 nm in vitro and in cells. To our knowledge, DCHQ is currently the only effective emission ratiometric pH indicator for two-photon microscopy and may serve as a useful starting point for the development of other TPEFM ratiometric dyes for quantitative measurement of other cell parameters such as Ca2+, Mg2+ or Na+.
    Journal of Microscopy 04/2005; 217(Pt 3):260-4. · 1.63 Impact Factor