Brenda J Reinhart

Carnegie Institution for Science, Вашингтон, West Virginia, United States

Are you Brenda J Reinhart?

Claim your profile

Publications (18)329.49 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of leaves and other lateral organs in plants depends on the proper specification of adaxial-abaxial (upper-lower) polarity. KANADI1 (KAN1), a member of the GARP family of transcription factors, is a key regulator of abaxial identity, leaf growth, and meristem formation in Arabidopsis thaliana. Here, we demonstrate that the Myb-like domain in KAN1 binds the 6-bp motif GNATA(A/T) and that this motif alone is sufficient to squelch transcription of a linked reporter in vivo. In addition, we report that KAN1 acts as a transcriptional repressor. Among its targets are genes involved in auxin biosynthesis, auxin transport, and auxin response. Furthermore, we find that the adaxializing HD-ZIPIII transcription factor REVOLUTA has opposing effects on multiple components of the auxin pathway. We hypothesize that HD-ZIPIII and KANADI transcription factors pattern auxin accumulation and responsiveness in the embryo. Specifically, we propose the opposing actions of KANADI and HD-ZIPIII factors on cotyledon formation (KANADI represses and HD-ZIPIII promotes cotyledon formation) occur through their opposing actions on genes acting at multiple steps in the auxin pathway.
    The Plant Cell 01/2014; 26(1). DOI:10.1105/tpc.113.111526 · 9.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The broadly conserved Class III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) and KANADI transcription factors have opposing and transformational effects on polarity and growth in all tissues and stages of the plant's life. To obtain a comprehensive understanding of how these factors work, we have identified transcripts that change in response to induced HD-ZIPIII or KANADI function. Additional criteria used to identify high-confidence targets among this set were presence of an adjacent HD-ZIPIII binding site, expression enriched within a subdomain of the shoot apical meristem, mutant phenotype showing defect in polar leaf and/or meristem development, physical interaction between target gene product and HD-ZIPIII protein, opposite regulation by HD-ZIPIII and KANADI, and evolutionary conservation of the regulator-target relationship. We find that HD-ZIPIII and KANADI regulate tissue-specific transcription factors involved in subsidiary developmental decisions, nearly all major hormone pathways, and new actors (such as INDETERMINATE DOMAIN4) in the ad/abaxial regulatory network. Multiple feedback loops regulating HD-ZIPIII and KANADI are identified, as are mechanisms through which HD-ZIPIII and KANADI oppose each other. This work lays the foundation needed to understand the components, structure, and workings of the ad/abaxial regulatory network directing basic plant growth and development.
    The Plant Cell 09/2013; DOI:10.1105/tpc.113.111518 · 9.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HD-ZIPIII and KANADI transcription factors have opposing and dramatic affects on plant development. Analysis of mutants shows these proteins to be master regulators of ad/abaxial (i.e., upper/lower) leaf polarity, leaf blade outgrowth, and branch formation. Because these factors do their work by regulating other genes, we have focused our attention on defining their targets. We have found overlap between the ad/abaxial regulatory pathway and hormone signaling pathways, especially pathways of abscisic acid and auxin signaling. This has led to the discovery that abscisic acid signaling acts upstream of HD-ZIPIII and KANADI in the control of germination and may ultimately explain how environmental stress pathways control new growth at the shoot apex. Auxin signaling conversely is downstream from HD-ZIPIII and KANADI action with these factors controlling targets at all steps of auxin action-biosynthesis, transport, regulation of transport, and signaling. Based on these findings, we propose a model in which the HD-ZIPIII and KANADI factors pattern auxin response in the embryo. Finally, many genes targeted for control by HD-ZIPIII and KANADI proteins are themselves transcription factors-indicating these master regulators call up tissue specific subprograms of transcriptional control to affect the many polar differences observed across tissues.
    Cold Spring Harbor Symposia on Quantitative Biology 05/2013; 77. DOI:10.1101/sqb.2013.77.014480
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlike the situation in animals, the final morphology of the plant body is highly modulated by the environment. During Arabidopsis development, intrinsic factors provide the framework for basic patterning processes. CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) transcription factors are involved in embryo, shoot and root patterning. During vegetative growth HD-ZIPIII proteins control several polarity set-up processes such as in leaves and the vascular system. We have identified several direct target genes of the HD-ZIPIII transcription factor REVOLUTA (REV) using a chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) approach. This analysis revealed that REV acts upstream of auxin biosynthesis and affects directly the expression of several class II HD-ZIP transcription factors that have been shown to act in the shade-avoidance response pathway. We show that, as well as involvement in basic patterning, HD-ZIPIII transcription factors have a critical role in the control of the elongation growth that is induced when plants experience shade. Leaf polarity is established by the opposed actions of HD-ZIPIII and KANADI transcription factors. Finally, our study reveals that the module that consists of HD-ZIPIII/KANADI transcription factors controls shade growth antagonistically and that this antagonism is manifested in the opposed regulation of shared target genes.
    The Plant Journal 05/2012; 72(1):31-42. DOI:10.1111/j.1365-313X.2012.05049.x · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are approximately 22-nucleotide noncoding RNAs that can regulate gene expression by directing mRNA degradation or inhibiting productive translation. Dominant mutations in PHABULOSA (PHB) and PHAVOLUTA (PHV) map to a miR165/166 complementary site and impair miRNA-guided cleavage of these mRNAs in vitro. Here, we confirm that disrupted miRNA pairing, not changes in PHB protein sequence, causes the developmental defects in phb-d mutants. In planta, disrupting miRNA pairing near the center of the miRNA complementary site had far milder developmental consequences than more distal mismatches. These differences correlated with differences in miRNA-directed cleavage efficiency in vitro, where mismatch scanning revealed more tolerance for mismatches at the center and 3' end of the miRNA compared to mismatches to the miRNA 5' region. In this respect, miR165/166 resembles animal miRNAs in its pairing requirements. Pairing to the 5' portion of the small silencing RNA appears crucial regardless of the mode of post-transcriptional repression or whether it occurs in plants or animals, supporting a model in which this region of the silencing RNA nucleates pairing to its target.
    The EMBO Journal 09/2004; 23(16):3356-64. DOI:10.1038/sj.emboj.7600340 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) constitute an extensive class of noncoding RNAs that are thought to regulate the expression of target genes via complementary base-pair interactions. To date, cloning has identified over 200 miRNAs from diverse eukaryotic organisms. Despite their success, such biochemical approaches are skewed toward identifying abundant miRNAs, unlike genome-wide, sequence-based computational predictions. We developed informatic methods to predict miRNAs in the C. elegans genome using sequence conservation and structural similarity to known miRNAs and generated 214 candidates. We confirmed the expression of four new miRNAs by Northern blotting and used a more sensitive PCR approach to verify the expression of ten additional candidates. Based on hypotheses underlying our computational methods, we estimate that the C. elegans genome may encode between 140 and 300 miRNAs and potentially many more.
    Molecular Cell 06/2003; 11(5):1253-63. DOI:10.1016/S1097-2765(03)00153-9 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA silencing phenomena were first discovered in plants, yet only the RNA interference pathway in animals has been subject to biochemical analysis. Here, we extend biochemical analysis to plant RNA silencing. We find that standard wheat germ extract contains Dicer-like enzymes that convert double-stranded RNA (dsRNA) into two classes of small interfering RNAs, as well as an RNA-dependent RNA polymerase activity that can convert exogenous single-stranded RNA into dsRNA. In this plant embryo extract, an endogenous microRNA (miRNA) that lacks perfect complementarity to its RNA targets nonetheless acts as a small interfering RNA. The miRNA guides an endonuclease to cleave efficiently wild-type Arabidopsis PHAVOLUTA mRNA, but not a dominant mutant previously shown to perturb leaf development. This finding supports the view that plant miRNAs direct RNAi and that miRNA-specified mRNA destruction is important for proper plant development. Thus, endonuclease complexes guided by small RNAs are a common feature of RNA silencing in both animals and plants.
    Genes & Development 02/2003; 17(1):49-63. DOI:10.1101/gad.1048103 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two major classes of small noncoding RNAs have emerged as important regulators of gene expression in eukaryotes, the short interfering RNAs (siRNAs) associated with RNA silencing and endogenous micro-RNAs (miRNAs) implicated in regulation of gene expression. Helper component-proteinase (HC-Pro) is a viral protein that blocks RNA silencing in plants. Here we examine the effect of HC-Pro on the accumulation of siRNAs and endogenous miRNAs. siRNAs were analyzed in transgenic tobacco plants silenced in response to three different classes of transgenes: sense-transgenes, inverted-repeat transgenes, and amplicon-transgenes. HC-Pro suppressed silencing in each line, blocking accumulation of the associated siRNAs and allowing accumulation of transcripts from the previously silenced loci. HC-Pro-suppression of silencing in the inverted-repeat- and amplicon-transgenic lines was accompanied by the apparent accumulation of long double-stranded RNAs and proportional amounts of small RNAs that are larger than the siRNAs that accumulate during silencing. Analysis of these results suggests that HC-Pro interferes with silencing either by inhibiting siRNA processing from double-stranded RNA precursors or by destabilizing siRNAs. In contrast to siRNAs, the accumulation of endogenous miRNAs was greatly enhanced in all of the HC-Pro-expressing lines. Thus, our results demonstrate that accumulation of siRNAs and miRNAs in plants can be differentially regulated by a viral protein. The fact that HC-Pro affects the miRNA pathway raises the possibility that this pathway is targeted by plant viruses as a means to control gene expression in the host.
    Proceedings of the National Academy of Sciences 12/2002; 99(23):15228-33. DOI:10.1073/pnas.232434999 · 9.81 Impact Factor
  • Source
    Brenda J Reinhart, David P Bartel
    Science 10/2002; 297(5588):1831. DOI:10.1126/science.1077183 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We predict regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity. Complementary sites within predicted targets are conserved in rice. Of the 49 predicted targets, 34 are members of transcription factor gene families involved in developmental patterning or cell differentiation. The near-perfect complementarity between plant miRNAs and their targets suggests that many plant miRNAs act similarly to small interfering RNAs and direct mRNA cleavage. The targeting of developmental transcription factors suggests that many plant miRNAs function during cellular differentiation to clear key regulatory transcripts from daughter cell lineages.
    Cell 09/2002; 110(4):513-20. DOI:10.1016/S0092-8674(02)00863-2 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are an extensive class of ~22-nucleotide noncoding RNAs thought to regulate gene expression in metazoans. We find that miRNAs are also present in plants, indicating that this class of noncoding RNA arose early in eukaryotic evolution. In this paper 16 Arabidopsis miRNAs are described, many of which have differential expression patterns in development. Eight are absolutely conserved in the rice genome. The plant miRNA loci potentially encode stem-loop precursors similar to those processed by Dicer (a ribonuclease III) in animals. Mutation of an Arabidopsis Dicer homolog, CARPEL FACTORY, prevents the accumulation of miRNAs, showing that similar mechanisms direct miRNA processing in plants and animals. The previously described roles of CARPEL FACTORY in the development of Arabidopsis embryos, leaves, and floral meristems suggest that the miRNAs could play regulatory roles in the development of plants as well as animals.
    Genes & Development 08/2002; 16(13):1616-26. DOI:10.1101/gad.1004402 · 12.64 Impact Factor
  • Source
    B J Reinhart, G Ruvkun
    [Show abstract] [Hide abstract]
    ABSTRACT: The Caenorhabditis elegans heterochronic gene lin-14 specifies the temporal sequence of postembryonic developmental events. lin-14, which encodes differentially spliced LIN-14A and LIN-14B1/B2 protein isoforms, acts at distinct times during the first larval stage to specify first and second larval stage-specific cell lineages. Proposed models for the molecular basis of these two lin-14 gene activities have included the production of functionally distinct isoforms and the generation of a temporal gradient of LIN-14 protein. We report here that loss of the LIN-14B1/B2 isoforms alone affects one of the two lin-14 temporal patterning functions, the specification of second larval stage lineages. A temporal expression difference between LIN-14A and LIN-14B1/B2 is not responsible for the stage-specific phenotype: protein levels of all LIN-14 isoforms are high in early first larval stage animals and decrease during the first larval stage. However, LIN-14A can partially substitute for LIN-14B1/B2 when expressed at a higher-than-normal level in the late L1 stage. These data indicate that LIN-14B1/B2 isoforms do not provide a distinct function of the lin-14 locus in developmental timing but rather may contribute to an overall level of LIN-14 protein that is the critical determinant of temporal cell fate.
    Genetics 02/2001; 157(1):199-209. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two small RNAs regulate the timing of Caenorhabditis elegans development. Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA, and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs. Here we have detected let-7 RNAs of approximately 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
    Nature 12/2000; 408(6808):86-9. · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ceh-14, a LIM class homeobox gene from Caenorhabditis elegans, is the orthologue of the vertebrate Lhx3/Lhx4 genes. ceh-14 reporter constructs are expressed in several different cell types: head and tail neurons, spermatheca and hypodermis. An intriguing aspect of the hypodermal expression pattern is that it takes the form of a gradient which is strongest in the central body region in L4 to young adult hermaphrodites. Promoter deletion analyses revealed that important regulatory elements for hypodermal expression are located within the transcribed region of ceh-14. Since a large part of the hypodermis is a syncytium, we hypothesized that this expression is triggered in a non-cell-autonomous fashion, a possible source being the underlying gonad. In males, which have a different gonadal organisation, the ceh-14 reporter constructs are expressed in a gradient that is strongest in the tail. By laser ablation of the gonadal precursor cells we found that ceh-14 reporter construct expression is eliminated in the hermaphrodite hypodermis, suggesting that the gonad plays a role in the generation of the gradient. Several signaling pathways are known in the gonad and the vulva, thus we crossed the mutations lin-3, egl-17 and lin-12 with the ceh-14 reporter lines. However, the expression of the reporter constructs is not affected in these mutant backgrounds. This suggests that another, presently unknown, signal triggers the graded hypodermal expression.
    Development Genes and Evolution 12/2000; 210(11):564-9. DOI:10.1007/s004270050347 · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two small RNAs regulate the timing of
    Nature 11/2000; 408(6808):86-89. · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ceh-14, a LIM class homeobox gene from Caenorhabditis elegans, is the orthologue of the vertebrate Lhx3/Lhx4 genes. ceh-14 reporter constructs are expressed in several different cell types: head and tail neurons, spermatheca and hypodermis. An intriguing aspect of the hypodermal expression pattern is that it takes the form of a gradient which is strongest in the central body region in L4 to young adult hermaphrodites. Promoter deletion analyses revealed that important regulatory elements for hypodermal expression are located within the transcribed region of ceh-14. Since a large part of the hypodermis is a syncytium, we hypothesized that this expression is triggered in a non-cell-autonomous fashion, a possible source being the underlying gonad. In males, which have a different gonadal organisation, the ceh-14 reporter constructs are expressed in a gradient that is strongest in the tail. By laser ablation of the gonadal precursor cells we found that ceh-14reporter construct expression is eliminated in the hermaphrodite hypodermis, suggesting that the gonad plays a role in the generation of the gradient. Several signaling pathways are known in the gonad and the vulva, thus we crossed the mutations lin-3, egl-17 and lin-12 with the ceh-14 reporter lines. However, the expression of the reporter constructs is not affected in these mutant backgrounds. This suggests that another, presently unknown, signal triggers the graded hypodermal expression.
    Development Genes and Evolution 09/2000; 210(11):564-569. DOI:10.1007/s004270000099 · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The C. elegans heterochronic gene pathway consists of a cascade of regulatory genes that are temporally controlled to specify the timing of developmental events. Mutations in heterochronic genes cause temporal transformations in cell fates in which stage-specific events are omitted or reiterated. Here we show that let-7 is a heterochronic switch gene. Loss of let-7 gene activity causes reiteration of larval cell fates during the adult stage, whereas increased let-7 gene dosage causes precocious expression of adult fates during larval stages. let-7 encodes a temporally regulated 21-nucleotide RNA that is complementary to elements in the 3' untranslated regions of the heterochronic genes lin-14, lin-28, lin-41, lin-42 and daf-12, indicating that expression of these genes may be directly controlled by let-7. A reporter gene bearing the lin-41 3' untranslated region is temporally regulated in a let-7-dependent manner. A second regulatory RNA, lin-4, negatively regulates lin-14 and lin-28 through RNA-RNA interactions with their 3' untranslated regions. We propose that the sequential stage-specific expression of the lin-4 and let-7 regulatory RNAs triggers transitions in the complement of heterochronic regulatory proteins to coordinate developmental timing.
    Nature 03/2000; 403(6772):901-6. DOI:10.1038/35002607 · 42.35 Impact Factor
  • Nature 01/2000; · 42.35 Impact Factor

Publication Stats

8k Citations
329.49 Total Impact Points

Institutions

  • 2003–2014
    • Carnegie Institution for Science
      • Department of Plant Biology
      Вашингтон, West Virginia, United States
    • Massachusetts Institute of Technology
      • Whitehead Institute for Biomedical Research
      Cambridge, Massachusetts, United States
  • 2002–2004
    • Whitehead Institute for Biomedical Research
      • Department of Biology
      Cambridge, Massachusetts, United States
  • 2001
    • Massachusetts General Hospital
      • Molecular Biology Laboratory
      Boston, Massachusetts, United States