B. Jalali

European Southern Observatory, Arching, Bavaria, Germany

Are you B. Jalali?

Claim your profile

Publications (21)52.1 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is often assumed that the strong gravitational field of a super-massive black hole disrupts an adjacent molecular cloud preventing classical star formation in the deep potential well of the black hole. Yet, young stars have been observed across the entire nuclear star cluster of the Milky Way including the region close ($<$0.5~pc) to the central black hole, Sgr A*. Here, we focus particularly on small groups of young stars, such as IRS 13N located 0.1 pc away from Sgr A*, which is suggested to contain about five embedded massive young stellar objects ($<$1 Myr). We perform three dimensional hydrodynamical simulations to follow the evolution of molecular clumps orbiting about a $4\times10^6~M_{\odot}$ black hole, to constrain the formation and the physical conditions of such groups. The molecular clumps in our models assumed to be isothermal containing 100 $M_{\odot}$ in $<$0.2 pc radius. Such molecular clumps exist in the circumnuclear disk of the Galaxy. In our highly eccentrically orbiting clump, the strong orbital compression of the clump along the orbital radius vector and perpendicular to the orbital plane causes the gas densities to increase to values higher than the tidal density of Sgr A*, which are required for star formation. Additionally, we speculate that the infrared excess source G2/DSO approaching Sgr A* on a highly eccentric orbit could be associated with a dust enshrouded star that may have been formed recently through the mechanism supported by our models.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aim at modelling small groups of young stars such as IRS 13N, 0.1 pc away from Sgr A*, which is suggested to contain a few embedded massive young stellar objects. We perform hydrodynamical simulations to follow the evolution of molecular clumps orbiting about a $4\times10^6 ~ M_{\odot}$ black hole, to constrain the formation and the physical conditions of such groups. We find that, the strong compression due to the black hole along the orbital radius vector of clumps evolving on highly eccentric orbits causes the clumps densities to increase to higher than the tidal density of Sgr A*, and required for star formation. This suggests that the tidal compression from the black hole could support star formation. Additionally, we speculate that the infrared excess source G2/DSO approaching Sgr A* on a highly eccentric orbit could be associated with a dust enshrouded star that may have been formed recently through the mechanism supported by our models.
    Proceedings of the International Astronomical Union 11/2013; 9(S303).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A fast moving infrared excess source (G2) which is widely interpreted as a core-less gas and dust cloud approaches Sagittarius A* (SgrA*) on a presumably elliptical orbit. VLT K_s-band and Keck K'-band data result in clear continuum identifications and proper motions of this about 19m Dusty S-cluster Object (DSO). In 2002-2007 it is confused with the star S63, but free of confusion again since 2007. Its near-infrared (NIR) colors and a comparison to other sources in the field speak in favor of the DSO being an IR excess star with photospheric continuum emission at 2 microns than a core-less gas and dust cloud. We also find very compact L'-band emission ($<$0.1'') contrasted by the reported extended (0.03'' up to about 0.2'' for the tail) Brgamma emission. The presence of a star will change the expected accretion phenomena, since a stellar Roche lobe may retain a fraction of the material during and after the peri-bothron passage.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The super-massive 4 million solar mass black hole (SMBH) SgrA* shows flare emission from the millimeter to the X-ray domain. The nucleus of the Milky Way has properties (stellar cluster, young stars, molecular gas and an accreting SMBH) that resemble those of currently higher luminous Low Luminosity Active Galactic Nuclei. A detailed analysis of the infrared light curves shows that the flares are probably generated in a single-state process forming a power-law distribution of the flux density. Near-infrared polarimetry shows signatures of strong gravity that are statistically significant against randomly polarized red noise. Details of the emission mechanism are discussed in a synchrotron/self-Compton model. SgrA* also allows to study the interaction of the SMBH with the immediate interstellar and gaseous environment of the central stellar cluster. Through infrared imaging of the central few arcseconds it is possible to study both inflow and outflow phenomena linked to the SgrA* black hole. In this context we also discuss the newly found dusty object that approaches SgrA* and present a comparison between recent Keck and VLT K-band data that clearly supports its detection as a about 19m K'-band continuum source.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For galaxies hosting supermassive black holes (SMBHs), it has been observed that the mass of the central black hole (M_BH) tightly correlates with the effective or central velocity dispersion (sigma) of the host galaxy. The origin of this M_BH - sigma scaling relation is assumed to lie in the merging history of the galaxies but many open questions about its origin and the behavior in different mass ranges still need to be addressed. The goal of this work is to study the black-hole scaling relations for low black-hole masses, where the regime of intermediate-mass black holes (IMBHs) in globular clusters (GCs) is entered. We collect all existing reports of dynamical black-hole measurements in globular clusters, providing black-hole masses or upper limits for 14 candidates. We plot the black-hole masses versus different cluster parameters including total mass, velocity dispersion, concentration and half-mass radius. We search for trends and test the correlations in order to quantify their significance using a set of different statistical approaches. For correlations showing a large significance we perform a linear fit, accounting for uncertainties and upper limits. We find a clear correlation between the mass of the IMBH and the velocity dispersion of the globular cluster. As expected, the total mass of the globular cluster then also correlates with the mass of the IMBH. While the slope of the M_BH - sigma correlation differs strongly from the one observed for SMBHs, the other scaling relations M_BH - M_TOT, and M_BH - L are similar to the correlations in galaxies. Significant correlations of black-hole mass with other cluster properties were not found in the present sample.
    Astronomy and Astrophysics 04/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intermediate-mass black holes (IMBHs, 10^2-10^5 M_sun) fill the gap between stellar-mass black holes and supermassive black holes (SMBHs). Simulations have shown that IMBHs may form in dense star clusters, and therefore may still be present in these smaller stellar systems. We investigate the Galactic globular cluster NGC 5286 for indications of a central IMBH using spectroscopic data from VLT/FLAMES, velocity measurements from the Rutgers Fabry Perot at CTIO, and photometric data from HST. We run analytic spherical and axisymmetric Jeans models with different central black-hole masses, anisotropy, mass-to-light ratio, and inclination. Further, we compare the data to a grid of N-body simulations without tidal field. Additionally, we use one N-body simulation to check the results of the spherical Jeans models for the total cluster mass. Both the Jeans models and the N-body simulations favor the presence of a central black hole in NGC 5286 and our detection is at the 1- to 1.5-sigma level. From the spherical Jeans models we obtain a best fit with black-hole mass M_BH=(1.5+-1.0)x10^3 M_sun. The error is the 68% confidence limit from Monte Carlo simulations. Axisymmetric models give a consistent result. The best fitting N-body model is found with a black hole of 0.9% of the total cluster mass (4.38+-0.18)x10^5 M_sun, which results in an IMBH mass of M_BH=(3.9+-2.0)x10^3 M_sun. Jeans models give lower values for the total cluster mass. Our test of the Jeans models with N-body simulation data shows that this discrepancy has two reasons: The influence of a radially varying M/L profile, and underestimation of the velocity dispersion as the measurements are limited to bright stars. We conclude that detection of IMBHs in Galactic globular clusters remains a challenging task unless their mass fractions are above those found for SMBHs in nearby galaxies. [abridged]
    Astronomy and Astrophysics 04/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For a sample of nine Galactic globular clusters we measured the inner kinematic profiles with integral-field spectroscopy that we combined with existing outer kinematic measurements and HST luminosity profiles. With this information we are able to detect the crucial rise in the velocity-dispersion profile which indicates the presence of a central black hole. In addition, N-body simulations compared to our data will give us a deeper insight in the properties of clusters with black holes and stronger selection criteria for further studies. For the first time, we obtain a homogeneous sample of globular cluster integral- field spectroscopy which allows a direct comparison between clusters with and without an intermediate-mass black hole.
    The Messenger. 01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We matched the reconstructed ARGUS pointings with the HST image and created a combined ARGUS cube. The first two dimensions are measured in RA and DEC and the third dimension in wavelength (nm). A header with the most important keywords is also given. (3 data files).
    VizieR Online Data Catalog. 01/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of supermassive black holes at high redshift still remains a puzzle to astronomers. Their growth becomes reasonable only when starting from a massive seed black hole with mass of the order of 10^2 - 10^5 M_SUN. Intermediate-mass black holes (IMBHs) are therefore an important field of research. Especially the possibility of finding them in the centers of globular clusters has recently drawn attention. The search for IMBHs in the centers of globular clusters could therefore shed light on the process of black-hole formation and cluster evolution. We are investigating six galactic globular clusters for the presence of an IMBH at their centers. Based on their kinematic and photometric properties, we selected the globular clusters NGC 1851, NGC 1904 (M79), NGC 5694, NGC 5824, NGC 6093 (M80) and NGC 6266 (M62). We use integral field spectroscopy in order to obtain the central velocity-dispersion profile of each cluster. We compute the cluster photometric center and the surface brightness profile using HST data. After combining these datasets we compare them to analytic Jeans models. We use varying M/L_V profiles for clusters with enough data points in order to reproduce their kinematic profiles in an optimal way. Finally, we vary the mass of the central black hole and test whether the cluster is better fitted with or without an IMBH. We present the statistical significance, including upper limits, of the black-hole mass for each cluster. NGC 1904 and NGC 6266 provide the highest significance for a black hole. Jeans models in combination with a M/L_V profile obtained from N-body simulations (in the case of NGC 6266) predict a central black hole of M_BH = (3 +- 1) x 10^3 M_SUN for NGC 1904 and M_BH = (2 +- 1) x 10^3 M_SUN for NGC 6266. Furthermore, we discuss the possible influence of dark remnants and mass segregation at the center of the cluster on the detection of an IMBH.
    Astronomy and Astrophysics 12/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are a number of faint compact infrared excess sources in the central stellar cluster of the Milky Way. Their nature and origin is unclear. In addition to several isolated objects of this kind we find a small but dense cluster of co-moving sources (IRS13N) about 3" west of SgrA* just 0.5" north of the bright IRS13E cluster of WR and O-type stars. Based on their color and brightness, there are two main possibilities: (1) they may be dust embedded stars older than few Myr, or (2) extremely young, dusty stars with ages less than 1Myr. We present fist H- and Ks-band identifications or proper motions of the IRS13N members, the high velocity dusty S-cluster object (DSO), and other infrared excess sources in the central field. We also present results of NIR H- and Ks-band ESO-SINFONI integral field spectroscopy of ISR13N. We show that within the uncertainties, the proper motions of the IRS13N sources in Ks- and L'-band are identical. This indicates that the bright L'-band IRS13N sources are indeed dust enshrouded stars rather than core-less dust clouds. The proper motions show that the IRS13N sources are not strongly gravitationally bound to each other implying that they have been formed recently. We also present a first H- and Ks-band identification as well as proper motions and HKsL'-colors of a fast moving DSO which was recently found in the cluster of high speed S-stars that surround the super-massive black hole Sagittarius A* (SgrA*). Most of the compact L'-band excess emission sources have a compact H- or Ks-band counterpart and therefore are likely stars with dust shells or disks. Our new results and orbital analysis from our previous work favor the hypothesis that the infrared excess IRS13N members and other dusty sources close to SgrA* are very young dusty stars and that star formation at the GC is a continuously ongoing process.
    Astronomy and Astrophysics 08/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of five high-velocity stars in the core of the globular cluster NGC 2808. The stars lie on the the red giant branch and show total velocities between 40 and 45 km/s. For a core velocity dispersion sigma_c = 13.4 km/s, this corresponds to up to 3.4 sigma_c. These velocities are close to the estimated escape velocity (~ 50 km/s) and suggest an ejection from the core. Two of these stars have been confirmed in our recent integral field spectroscopy data and we will discuss them in more detail here. These two red giants are located at a projected distance of ~ 0.3 pc from the center. According to their positions on the color magnitude diagram, both stars are cluster members. We investigate several possible origins for the high velocities of the stars and conceivable ejection mechanisms. Since the velocities are close to the escape velocity, it is not obvious whether the stars are bound or unbound to the cluster. We therefore consider both cases in our analysis. We perform numerical simulations of three-body dynamical encounters between binaries and single stars and compare the resulting velocity distributions of escapers with the velocities of our stars. We compare the predictions for a single dynamical encounter with a compact object with those of a sequence of two-body encounters due to relaxation. If the stars are unbound, the encounter must have taken place recently, when the stars were already in the giant phase. After including binary fractions and black-hole retention fractions, projection effects, and detection probabilities from Monte-Carlo simulations, we estimate the expected numbers of detections for all the different scenarios. Based on these numbers, we conclude that the most likely scenario is that the stars are bound and were accelerated by a single encounter between a binary of main-sequence stars and a ~ 10 M_sun black hole.
    Astronomy and Astrophysics 07/2012; 543:A82. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We matched the reconstructed ARGUS pointings with the HST image and created a combined ARGUS cube. The first two dimensions are measured in RA and DEC and the third dimension in wavelength (nm). A header with the most important keywords is also given. (2 data files).
    VizieR Online Data Catalog. 05/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Globular clusters are an excellent laboratory for stellar population and dynamical research. Recent studies have shown that these stellar systems are not as simple as previously assumed. With multiple stellar populations as well as outer rotation and mass segregation they turn out to exhibit high complexity. This includes intermediate-mass black holes which are proposed to sit at the centers of some massive globular clusters. Today's high angular resolution ground based spectrographs allow velocity-dispersion measurements at a spatial resolution comparable to the radius of influence for plausible IMBH masses, and to detect changes in the inner velocity-dispersion profile. Together with high quality photometric data from HST, it is possible to constrain black-hole masses by their kinematic signatures. We determine the central velocity-dispersion profile of the globular cluster NGC 2808 using VLT/FLAMES spectroscopy. In combination with HST/ACS data our goal is to probe whether this massive cluster hosts an intermediate-mass black hole at its center and constrain the cluster mass to light ratio as well as its total mass. We derive a velocity-dispersion profile from integral field spectroscopy in the center and Fabry Perot data for larger radii. High resolution HST data are used to obtain the surface brightness profile. Together, these data sets are compared to dynamical models with varying parameters such as mass to light ratio profiles and black-hole masses. Using analytical Jeans models in combination with variable M/L profiles from N-body simulations we find that the best fit model is a no black hole solution. After applying various Monte Carlo simulations to estimate the uncertainties, we derive an upper limit of the back hole mass of M_BH < 1 x 10^4 M_SUN (with 95 % confidence limits) and a global mass-to-light ratio of M/L_V = (2.1 +- 0.2) M_SUN/L_SUN.
    Astronomy and Astrophysics 04/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sagittarius A*, the super-massive black hole at the center of the Milky Way, is surrounded by a small cluster of high velocity stars, known as the S-stars. We aim to constrain the amount and nature of stellar and dark mass associated with the cluster in the immediate vicinity of Sagittarius A*. We use near-infrared imaging to determine the $K_\mathrm{s}$-band luminosity function of the S-star cluster members, and the distribution of the diffuse background emission and the stellar number density counts around the central black hole. This allows us to determine the stellar light and mass contribution expected from the faint members of the cluster. We then use post-Newtonian N-body techniques to investigate the effect of stellar perturbations on the motion of S2, as a means of detecting the number and masses of the perturbers. We find that the stellar mass derived from the $K_\mathrm{s}$-band luminosity extrapolation is much smaller than the amount of mass that might be present considering the uncertainties in the orbital motion of the star S2. Also the amount of light from the fainter S-cluster members is below the amount of residual light at the position of the S-star cluster after removing the bright cluster members. If the distribution of stars and stellar remnants is strongly enough peaked near Sagittarius A*, observed changes in the orbital elements of S2 can be used to constrain both their masses and numbers. Based on simulations of the cluster of high velocity stars we find that at a wavelength of 2.2 $\mu$m close to the confusion level for 8 m class telescopes blend stars will occur (preferentially near the position of Sagittarius A*) that last for typically 3 years before they dissolve due to proper motions.
    Astronomy and Astrophysics 03/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supermassive black holes (SMBHs) are fundamental keys to understand the formation and evolution of their host galaxies. However, the formation and growth of SMBHs are not yet well understood. One of the proposed formation scenarios is the growth of SMBHs from seed intermediate-mass black holes (IMBHs, 10^2 to 10^5 M_{\odot}) formed in star clusters. In this context, and also with respect to the low mass end of the M-sigma relation for galaxies, globular clusters are in a mass range that make them ideal systems to look for IMBHs. Among Galactic star clusters, the massive cluster $\omega$ Centauri is a special target due to its central high velocity dispersion and also its multiple stellar populations. We study the central structure and dynamics of the star cluster $\omega$ Centauri to examine whether an IMBH is necessary to explain the observed velocity dispersion and surface brightness profiles. We perform direct N-body simulations to follow the dynamical evolution of $\omega$ Centauri. The simulations are compared to the most recent data-sets in order to explain the present-day conditions of the cluster and to constrain the initial conditions leading to the observed profiles. We find that starting from isotropic spherical multi-mass King models and within our canonical assumptions, a model with a central IMBH mass of 2% of the cluster stellar mass, i.e. a 5x10^4 M_{\odot} IMBH, provides a satisfactory fit to both the observed shallow cusp in surface brightness and the continuous rise towards the center of the radial velocity dispersion profile. In our isotropic spherical models, the predicted proper motion dispersion for the best-fit model is the same as the radial velocity dispersion one. (abridged)
    Astronomy and Astrophysics 11/2011; · 5.08 Impact Factor
  • Behrang Jalali
    [Show abstract] [Hide abstract]
    ABSTRACT: The main aim of this work is to determine whether the star cluster ω Centauri: hosts an intermediate-mass black hole (IMBH), as well as to investigate the dynamics of its central region. We perform direct N-body simulations on Graphics Processing Units (GPUs) and run orbit-based models which allow us to follow the temporal evolution of ω Centauri and to study its orbital structure. To this aim, we take two-dimensional integral field spectroscopic data for a few Galactic globular clusters, including ω Centauri, with FLAMES at the ESO Very Large Telescope (VLT) on Paranal in Chile. In particular, we are interested in constraining the mass of a possible IMBH in the center of our proposed star clusters. IMBHs have recently received growing attention as these objects could play an important role in the building of nuclear clusters and the formation and growth of super-massive black holes. Understanding the nature of IMBHs, in particular for masses < 10^5M⊙ (i.e. at the low mass end of the black hole mass versus velocity dispersion correlation) is a critical step towards a better understanding of the dynamics of their hosts: massive star clusters or dwarf galaxy nuclei. We focus on one of the best studied cases to date: ω Centauri. This cluster is one of the most important targets in this context as it is suspected to be the stripped nucleus of a dwarf galaxy and hence to represent a transition object between globular clusters and nuclear clusters. >From our observations, we confirm the measured rise in the central velocity dispersion of this cluster up to 23 km/s as the signature of a central IMBH. On the modelling side, we could well reproduce the observed kinematics and also the light profile of this cluster applying both Jeans spherical isotropic models as well as evolutionary N-body simulations containing a central 5 x 10^4M⊙ IMBH. In addition, we perform axisymmetric orbit-based models that explore the anisotropy profile and therefore orbital structure of our star cluster. The preliminary result of this method also suggest a presence of 5 x 10^4M⊙ IMBH. We propose some further detailed work which could set tighter constraints on the initial conditions of ω Centauri as well as on the existence of a central IMBH.
    09/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intermediate-mass black holes (IMBHs) are of interest in a wide range of astrophysical fields. In particular, the possibility of finding them at the centers of globular clusters has recently drawn attention. IMBHs became detectable since the quality of observational data sets, particularly those obtained with HST and with high resolution ground based spectrographs, advanced to the point where it is possible to measure velocity dispersions at a spatial resolution comparable to the size of the gravitational sphere of influence for plausible IMBH masses. We present results from ground based VLT/FLAMES spectroscopy in combination with HST data for the globular cluster NGC 6388. The aim of this work is to probe whether this massive cluster hosts an intermediate-mass black hole at its center and to compare the results with the expected value predicted by the $M_{\bullet} - \sigma$ scaling relation. The spectroscopic data, containing integral field unit measurements, provide kinematic signatures in the center of the cluster while the photometric data give information of the stellar density. Together, these data sets are compared to dynamical models and present evidence of an additional compact dark mass at the center: a black hole. Using analytical Jeans models in combination with various Monte Carlo simulations to estimate the errors, we derive (with 68% confidence limits) a best fit black-hole mass of $ (17 \pm 9) \times 10^3 M_{\odot}$ and a global mass-to-light ratio of $M/L_V = (1.6 \pm 0.3) \ M_{\odot}/L_{\odot}$.
    Astronomy and Astrophysics 07/2011; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present results from ground based VLT/FLAMES spectroscopy in combination with HST data for the globular cluster NGC 6388. The aim of this work is to probe whether this massive cluster hosts an intermediate-mass black hole at its center and to compare the results with the expected value predicted by the M-sigma scaling relation. (2 data files).
    VizieR Online Data Catalog. 07/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Galactic globular cluster omega Centauri is a prime candidate for hosting an intermediate mass black hole. Recent measurements lead to contradictory conclusions on this issue. We use VLT-FLAMES to obtain new integrated spectra for the central region of omega Centauri. We combine these data with existing measurements of the radial velocity dispersion profile taking into account a new derived center from kinematics and two different centers from the literature. The data support previous measurements performed for a smaller field of view and show a discrepancy with the results from a large proper motion data set. We see a rise in the radial velocity dispersion in the central region to 22.8+-1.2 km/s, which provides a strong sign for a central black hole. Isotropic dynamical models for omega Centauri imply black hole masses ranging from 3.0 to 5.2x10^4 solar masses depending on the center. The best-fitted mass is 4.7+-1.0x10^4 solar masses. Comment: 5 pages, published in The Astrophysical Journal Letters
    07/2010;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Galactic globular cluster ω Centauri is a prime candidate for hosting an intermediate-mass black hole. Recent measurements lead to contradictory conclusions on this issue. We use VLT-FLAMES to obtain new integrated spectra for the central region of ω Centauri. We combine these data with existing measurements of the radial velocity dispersion profile taking into account a new derived center from kinematics and two different centers from the literature. The data support previous measurements performed for a smaller field of view and show a discrepancy with the results from a large proper motion data set. We see a rise in the radial velocity dispersion in the central region to 22.8 ± 1.2 km s–1, which provides a strong sign for a central black hole. Isotropic dynamical models for ω Centauri imply black hole masses ranging from 3.0 × 104 to 5.2 × 104 M ☉ depending on the center. The best-fitted mass is (4.7 ± 1.0) × 104 M ☉.
    The Astrophysical Journal Letters 07/2010; 719(1):L60. · 6.35 Impact Factor