B. Armstrong

University of Illinois, Urbana-Champaign, Urbana, IL, United States

Are you B. Armstrong?

Claim your profile

Publications (2)6.73 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results of X-ray observations of a sample of 15 clusters selected via their imprint on the cosmic microwave background from the thermal Sunyaev-Zel'dovich (SZ) effect. These clusters are a subset of the first SZ-selected cluster catalog, obtained from observations of 178 deg2 of sky surveyed by the South Pole Telescope (SPT). Using X-ray observations with Chandra and XMM-Newton, we estimate the temperature, TX , and mass, Mg , of the intracluster medium within r 500 for each cluster. From these, we calculate YX = MgTX and estimate the total cluster mass using an M 500-YX scaling relation measured from previous X-ray studies. The integrated Comptonization, Y SZ, is derived from the SZ measurements, using additional information from the X-ray-measured gas density profiles and a universal temperature profile. We calculate scaling relations between the X-ray and SZ observables and find results generally consistent with other measurements and the expectations from simple self-similar behavior. Specifically, we fit a Y SZ-YX relation and find a normalization of 0.82 ± 0.07, marginally consistent with the predicted ratio of Y SZ/YX = 0.91 ± 0.01 that would be expected from the density and temperature models used in this work. Using the YX -derived mass estimates, we fit a Y SZ-M 500 relation and find a slope consistent with the self-similar expectation of Y SZM 5/3 with a normalization consistent with predictions from other X-ray studies. We find that the SZ mass estimates, derived from cosmological simulations of the SPT survey, are lower by a factor of 0.78 ± 0.06 relative to the X-ray mass estimates. This offset is at a level of 1.3σ when considering the ~15% systematic uncertainty for the simulation-based SZ masses. Overall, the X-ray measurements confirm that the scaling relations of the SZ-selected clusters are consistent with the properties of other X-ray-selected samples of massive clusters, even allowing for the broad redshift range (0.29 < z < 1.08) of the sample.
    The Astrophysical Journal 08/2011; 738(1):48. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present results of X-ray observations of a sample of 15 clusters selected via their imprint on the cosmic microwave background (CMB) from the thermal Sunyaev-Zel'dovich (SZ) effect. These clusters are a subset of the first SZ-selected cluster catalog, obtained from observations of 178 deg^2 of sky surveyed by the South Pole Telescope. Using X-ray observations with Chandra and XMM-Newton, we estimate the temperature, T_X, and mass, M_g, of the intracluster medium (ICM) within r_500 for each cluster. From these, we calculate Y_X=M_g T_X and estimate the total cluster mass using a M_500-Y_X scaling relation measured from previous X-ray studies. The integrated Comptonization, Y_SZ, is derived from the SZ measurements, using additional information from the X-ray measured gas density profiles and a universal temperature profile. We calculate scaling relations between the X-ray and SZ observables, and find results generally consistent with other measurements and the expectations from simple self-similar behavior. Specifically, we fit a Y_SZ-Y_X relation and find a normalization of 0.82 +- 0.07, marginally consistent with the predicted ratio of Y_SZ/Y_X=0.91+-0.01 that would be expected from the density and temperature models used in this work. Using the Y_X derived mass estimates, we fit a Y_SZ-M_500 relation and find a slope consistent with the self-similar expectation of Y_SZ ~ M^5/3 with a normalization consistent with predictions from other X-ray studies. We compare the X-ray mass estimates to previously published SZ mass estimates derived from cosmological simulations of the SPT survey. We find that the SZ mass estimates are lower by a factor of 0.89+-0.06, which is within the ~15% systematic uncertainty quoted for the simulation-based SZ masses.