Are you Ashley Han?

Claim your profile

Publications (2)3.11 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipids self-assemble in bulk oils to form structures such as reverse micelles that can alter the microenvironment where chemical degradation reactions occur, such as lipid oxidation. In this study, we examined the influence of phospholipid reverse micelles on the activity of non-polar (α-tocopherol) and polar (Trolox) antioxidants in stripped soybean oil (SSO). Reverse micelles were formed by adding 1000 μM 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to SSO. The addition of DOPC reverse micelles had a prooxidant effect, shortening the lag phase of SSO at 55 °C. DOPC improved the activity of low α-tocopherol or Trolox concentrations (10 μM) but decreased the activity of high concentrations (100 μM). Hydrophilic Trolox had better antioxidant activity than hydrophobic α-tocopherol. Fluorescence steady state and lifetime decay studies suggests that differences in the antioxidant activity of Trolox and α-tocopherol could be due to differences in their physical location in DOPC reverse micelles. These results will improve our understanding and control of lipid oxidation in bulk oils.
    Food & function. 06/2011; 2(6):302-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oxidation of edible oil yields both primary and secondary oxidation products (e.g., hydroperoxides, carbonyls, hydrocarbons, and epoxides), which produce undesirable sensory and biological effects. Consequently, the suppression of lipid oxidation in food matrices is of great importance. The rate and extent of lipid oxidation in many heterogeneous foods are strongly affected by the physicochemical characteristics of water-oil interfaces. This study examined the ability of dioleoylphosphatidylcholine (DOPC) and water to form association colloids within bulk oil, as well as their impact on lipid oxidation kinetics. Attenuation was used to show the DOPC and water concentrations at which association colloids existed without altering the optical properties of the oil. Interfacial tension and fluorescence spectrometry showed the critical micelle concentration (CMC) of DOPC in stripped soybean oil was around 650 μM at room temperature. Small-angle X-ray scattering (SAXS) and fluorescence probes showed that water had a very strong impact on the properties of the association colloids formed by DOPC. Measurement of primary and secondary lipid oxidation products revealed that the association colloids formed by DOPC had a pro-oxidant effect. The characterization of association colloids could provide a better understanding of the mechanisms of lipid oxidation in bulk oils and provide insights into new antioxidant technologies.
    Journal of Agricultural and Food Chemistry 10/2010; 58(22):11993-9. · 3.11 Impact Factor