Andrew D Luster

Harvard Medical School, Boston, Massachusetts, United States

Are you Andrew D Luster?

Claim your profile

Publications (294)2875.66 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Chemokines are chemotactic cytokines that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein-coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.
    Annual Review of Immunology 03/2014; 32:659-702. · 36.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T-cells and acts as a chemoattractant for monocytes.1 Originally, CCL1 was identified as a 73 amino acid protein having one N-glycosylation site,1 and a variant 74 residue non-glycosylated form, Ser-CCL1, has also been described.2 There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser-CCL1. Here we report the total chemical syntheses of both N-glycosylated and non-glycosylated forms of (Ser-)CCL1, by convergent native chemical ligation. We used an N-glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide-αthioester building block.3 Chemotaxis assays of these glycoproteins and the corresponding non-glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser-)CCL1 using homogeneous N-glycosylated protein molecules of defined covalent structure.
    Angewandte Chemie International Edition 03/2014; · 13.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Vitiligo is an autoimmune disease of the skin that results in disfiguring white spots. There are no U.S. Food and Drug Administration-approved treatments for vitiligo, and most off-label treatments yield unsatisfactory results. Vitiligo patients have increased numbers of autoreactive, melanocyte-specific CD8(+) T cells in the skin and blood, which are directly responsible for melanocyte destruction. We report that gene expression in lesional skin from vitiligo patients revealed an interferon-γ (IFN-γ)-specific signature, including the chemokine CXCL10. CXCL10 was elevated in both vitiligo patient skin and serum, and CXCR3, its receptor, was expressed on pathogenic T cells. To address the function of CXCL10 in vitiligo, we used a mouse model of disease that also exhibited an IFN-γ-specific gene signature, expression of CXCL10 in the skin, and up-regulation of CXCR3 on antigen-specific T cells. Mice that received Cxcr3(-/-) T cells developed minimal depigmentation, as did mice lacking Cxcl10 or treated with CXCL10-neutralizing antibody. CXCL9 promoted autoreactive T cell global recruitment to the skin but not effector function, whereas CXCL10 was required for effector function and localization within the skin. Surprisingly, CXCL10 neutralization in mice with established, widespread depigmentation induces reversal of disease, evidenced by repigmentation. These data identify a critical role for CXCL10 in both the progression and maintenance of vitiligo and thereby support inhibiting CXCL10 as a targeted treatment strategy.
    Science translational medicine 02/2014; 6(223):223ra23. · 10.76 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The transcriptional repressor B lymphocyte-induced maturation protein 1 (BLIMP1) is a master regulator of B and T cell differentiation. To examine the role of BLIMP1 in innate immunity, we used a conditional knockout (CKO) of Blimp1 in myeloid cells and found that Blimp1 CKO mice were protected from lethal infection induced by Listeria monocytogenes. Transcriptome analysis of Blimp1 CKO macrophages identified the murine chemokine (C-C motif) ligand 8, CCL8, as a direct target of Blimp1-mediated transcriptional repression in these cells. BLIMP1-deficient macrophages expressed elevated levels of Ccl8, and consequently Blimp1 CKO mice had higher levels of circulating CCL8, resulting in increased neutrophils in the peripheral blood, promoting a more aggressive antibacterial response. Mice lacking the Ccl8 gene were more susceptible to L. monocytogenes infection than were wild-type mice. Although CCL8 failed to recruit neutrophils directly, it was chemotactic for γ/δ T cells, and CCL8-responsive γ/δ T cells were enriched for IL-17F. Finally, CCL8-mediated enhanced clearance of L. monocytogenes was dependent on γ/δ T cells. Collectively, these data reveal an important role for BLIMP1 in modulating host defenses by suppressing expression of the chemokine CCL8.
    The Journal of Immunology 01/2014; · 5.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
    Pharmacological reviews 01/2014; 66(1):1-79. · 17.00 Impact Factor
  • Source
  • Source
  • Nancy D Kim, Andrew D Luster
    Nature medicine 10/2013; 19(10):1208-1210. · 27.14 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We investigated the roles of IFN regulatory factor (IRF)-3 and IRF-7 in innate antiviral immunity against dengue virus (DENV). Double-deficient Irf-3(-/-)7(-/-) mice infected with the DENV2 strain S221 possessed 1,000-150,000 fold higher levels of viral RNA than wild-type and single-deficient mice 24 h postinfection (hpi); however, they remained resistant to lethal infection. IFN-α/β was induced similarly in wild-type and Irf-3(-/-) mice post-DENV infection, whereas in the Irf-7(-/-) and Irf-3(-/-)7(-/-) mice, significantly low levels of IFN-α/β expression was observed within 24 hpi. IFN-stimulated gene induction was also delayed in Irf-3(-/-)7(-/-) mice relative to wild-type and single-deficient mice. In particular, Cxcl10 and Ifnα2 were rapidly induced independently of both IRF-3 and IRF-7 in the Irf-3(-/-)7(-/-) mice with DENV infection. Higher levels of serum IFN-γ, IL-6, CXCL10, IL-8, IL-12 p70, and TNF were also observed in Irf-3(-/-)7(-/-) mice 24 hpi, at which time point viral titers peaked and started to be cleared. Ab-mediated blockade experiments revealed that IFN-γ, CXCL10, and CXCR3 function to restrict DENV replication in Irf-3(-/-)7(-/-) mice. Additionally, the IFN-stimulated genes Cxcl10, Ifit1, Ifit3, and Mx2 can be induced via an IRF-3- and IRF-7-independent pathway that does not involve IFN-γ signaling for protection against DENV. Collectively, these results demonstrate that IRF-3 and IRF-7 are redundant, albeit IRF-7 plays a more important role than IRF-3 in inducing the initial IFN-α/β response; only the combined actions of IRF-3 and IRF-7 are necessary for efficient control of early DENV infection; and the late, IRF-3- and IRF-7-independent pathway contributes to anti-DENV immunity.
    The Journal of Immunology 09/2013; · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The CC chemokine ligand 18 (CCL18) is one of the most highly expressed chemokines in human chronic inflammatory diseases. An appreciation of the role of CCL18 in these diseases has been hampered by the lack of an identified chemokine receptor. We report that the human chemokine receptor CCR8 is a CCL18 receptor. CCL18 induced chemotaxis and calcium flux of human CCR8-transfected cells. CCL18 bound with high affinity to CCR8 and induced its internalization. Human CCL1, the known endogenous CCR8 ligand, and CCL18 competed for binding to CCR8-transfected cells. Further, CCL1 and CCL18 induced heterologous cross-desensitization of CCR8-transfected cells and human Th2 cells. CCL18 induced chemotaxis and calcium flux of human activated highly polarized Th2 cells through CCR8. Wild-type but not Ccr8-deficient activated mouse Th2 cells migrated in response to CCL18. CCL18 and CCR8 were coexpressed in esophageal biopsy tissue from individuals with active eosinophilic esophagitis (EoE) and were present at markedly higher levels compared with esophageal tissue isolated from EoE patients whose disease was in remission or in normal controls. Identifying CCR8 as a chemokine receptor for CCL18 will help clarify the biological role of this highly expressed chemokine in human disease.
    Journal of Experimental Medicine 09/2013; · 13.21 Impact Factor
  • Source
    Zamaneh Mikhak, James P Strassner, Andrew D Luster
    [show abstract] [hide abstract]
    ABSTRACT: T cell trafficking into the lung is critical for lung immunity, but the mechanisms that mediate T cell lung homing are not well understood. Here, we show that lung dendritic cells (DCs) imprint T cell lung homing, as lung DC-activated T cells traffic more efficiently into the lung in response to inhaled antigen and at homeostasis compared with T cells activated by DCs from other tissues. Consequently, lung DC-imprinted T cells protect against influenza more effectively than do gut and skin DC-imprinted T cells. Lung DCs imprint the expression of CCR4 on T cells, and CCR4 contributes to T cell lung imprinting. Lung DC-activated, CCR4-deficient T cells fail to traffic into the lung as efficiently and to protect against influenza as effectively as lung DC-activated, CCR4-sufficient T cells. Thus, lung DCs imprint T cell lung homing and promote lung immunity in part through CCR4.
    Journal of Experimental Medicine 08/2013; · 13.21 Impact Factor
  • 07/2013;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The clearance of apoptotic cells is critical for the control of tissue homeostasis; however, the full range of receptors on phagocytes responsible for the recognition of apoptotic cells remains to be identified. Here we found that dendritic cells (DCs), macrophages and endothelial cells used the scavenger receptor SCARF1 to recognize and engulf apoptotic cells via the complement component C1q. Loss of SCARF1 impaired the uptake of apoptotic cells. Consequently, in SCARF1-deficient mice, dying cells accumulated in tissues, which led to a lupus-like disease, with the spontaneous generation of autoantibodies to DNA-containing antigens, activation of cells of the immune system, dermatitis and nephritis. The discovery of such interactions of SCARF1 with C1q and apoptotic cells provides insight into the molecular mechanisms involved in the maintenance of tolerance and prevention of autoimmune disease.
    Nature Immunology 07/2013; · 26.20 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The continued spread of HIV underscores the need to interrupt transmission. One attractive strategy, in the absence of an effective vaccine, is a topical microbicide, but the need for application around the time of sexual intercourse leads to poor patient compliance. Intravaginal (IVAG) application of CD4 aptamer-siRNA chimeras (CD4-AsiCs) targeting the HIV coreceptor CCR5, gag, and vif protected humanized mice from sexual transmission. In non-dividing cells and tissue, RNAi-mediated gene knockdown lasts for several weeks, providing an opportunity for infrequent dosing not temporally linked to sexual intercourse, when compliance is challenging. Here, we investigate the durability of gene knockdown and viral inhibition, protection afforded by CCR5 or HIV gene knockdown on their own, and effectiveness of CD4-AsiCs formulated in a gel in polarized human cervicovaginal explants and in humanized mice. CD4-AsiC-mediated gene knockdown persisted for several weeks. Cell-specific gene knockdown and protection were comparable in a hydroxyethylcellulose gel formulation. CD4-AsiCs against CCR5 or gag/vif performed as well as a cocktail in humanized mice. Transmission was completely blocked by CCR5 CD4-AsiCs applied 2 days before challenge. Significant, but incomplete, protection also occurred when exposure was delayed for 4 or 6 days. CD4-AsiCs targeting gag/vif provided some protection when administered only after exposure. These data suggest that CD4-AsiCs are a promising approach for developing an HIV microbicide.Molecular Therapy (2013); doi:10.1038/mt.2013.77.
    Molecular Therapy 04/2013; · 7.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Induction of endogenous regulatory T (Treg) cells represents an exciting new potential modality for treating allergic diseases, such as asthma. Treg cells have been implicated in the regulation of asthma, but the anatomic location in which they exert their regulatory function and the mechanisms controlling the migration necessary for their suppressive function in asthma are not known. Understanding these aspects of Treg cell biology will be important for harnessing their power in the clinic. OBJECTIVE: We sought to determine the anatomic location at which Treg cells exert their regulatory function in the sensitization and effector phases of allergic asthma and to determine the chemokine receptors that control the migration of Treg cells to these sites in vivo in both mice and human subjects. METHODS: The clinical efficacy and anatomic location of adoptively transferred chemokine receptor-deficient CD4(+)CD25(+) forkhead box protein 3-positive Treg cells was determined in the sensitization and effector phases of allergic airway inflammation in mice. The chemokine receptor expression profile was determined on Treg cells recruited into the human airway after bronchoscopic segmental allergen challenge of asthmatic patients. RESULTS: We show that CCR7, but not CCR4, is required on Treg cells to suppress allergic airway inflammation during the sensitization phase. In contrast, CCR4, but not CCR7, is required on Treg cells to suppress allergic airway inflammation during the effector phase. Consistent with our murine studies, human subjects with allergic asthma had an increase in CCR4-expressing functional Treg cells in the lungs after segmental allergen challenge. CONCLUSION: The location of Treg cell function differs during allergic sensitization and allergen-induced recall responses in the lung, and this differential localization is critically dependent on differential chemokine function.
    The Journal of allergy and clinical immunology 04/2013; · 12.05 Impact Factor
  • Jason W Griffith, Andrew D Luster
    [show abstract] [hide abstract]
    ABSTRACT: The development of clinical therapeutics that interfere with the migration of leukocytes has revolutionized the treatment of multiple sclerosis and holds great promise for the treatment of a wide range of inflammatory diseases. As the molecules essential for the multi-step adhesion cascade that mediates cellular migration have been elucidated, the number of potential targets available to modulate leukocyte trafficking has increased exponentially. In this Viewpoint, we briefly review our current understanding of these molecular targets and how these targets vary by tissue and leukocyte subset with emphasis on T cells. We then describe the two currently approved therapeutics that target cell migration, natalizumab and fingolimod, and discuss how an improved understanding of their function could pave the way for the development of safer and more efficacious therapies for inflammatory and autoimmune diseases.
    European Journal of Immunology 04/2013; · 4.97 Impact Factor
  • The Journal of allergy and clinical immunology 02/2013; · 12.05 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: There has been much recent interest in lysophosphatidic acid (LPA) signaling through one of its receptors, LPA(1), in fibrotic diseases, but the mechanisms by which LPA-LPA(1) signaling promotes pathological fibrosis remain to be fully elucidated. Using a mouse peritoneal fibrosis model, we demonstrate central roles for LPA and LPA(1) in fibroblast proliferation. Genetic deletion or pharmacological antagonism of LPA(1) protected mice from peritoneal fibrosis, blunting the increases in peritoneal collagen by 65.4 and 52.9%, respectively, compared to control animals and demonstrated that peritoneal fibroblast proliferation was highly LPA(1) dependent. Activation of LPA(1) on mesothelial cells induced these cells to express connective tissue growth factor (CTGF), driving fibroblast proliferation in a paracrine fashion. Activation of mesothelial cell LPA(1) induced CTGF expression by inducing cytoskeleton reorganization in these cells, causing nuclear translocation of myocardin-related transcription factor (MRTF)-A and MRTF-B. Pharmacological inhibition of MRTF-induced transcription also diminished CTGF expression and fibrosis in the peritoneal fibrosis model, mitigating the increase in peritoneal collagen content by 57.9% compared to controls. LPA(1)-induced cytoskeleton reorganization therefore makes a previously unrecognized but critically important contribution to the profibrotic activities of LPA by driving MRTF-dependent CTGF expression, which, in turn, drives fibroblast proliferation.-Sakai, N., Chun, J., Duffield, J. S., Wada, T., Luster, A. D., Tager, A. M. LPA(1)-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation.
    The FASEB Journal 01/2013; · 5.70 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Psoriasis is an immune-mediated chronic inflammatory skin disease, characterized by epidermal hyperplasia and infiltration of leukocytes into the dermis and epidermis. IL-23 is expressed in psoriatic skin, and IL-23 injected into the skin of mice produces IL-22-dependent dermal inflammation and acanthosis. The chemokine receptor CCR2 has been implicated in the pathogenesis of several inflammatory diseases, including psoriasis. CCR2-positive cells and the CCR2 ligand, CCL2 are abundant in psoriatic lesions. To examine the requirement of CCR2 in the development of IL-23-induced cutaneous inflammation, we injected the ears of wild-type (WT) and CCR2-deficient (CCR2) mice with IL-23. CCR2 mice had increased ear swelling and epidermal thickening, which was correlated with increased cutaneous IL-4 levels and increased numbers of eosinophils within the skin. In addition, TSLP, a cytokine known to promote and amplify T helper cell type 2 (Th2) immune responses, was also increased within the inflamed skin of CCR2 mice. Our data suggest that increased levels of TSLP in CCR2 mice may contribute to the propensity of these mice to develop increased Th2-type immune responses.
    PLoS ONE 01/2013; 8(3):e58196. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Acute rejection, a common complication of lung transplantation, may promote obliterative bronchiolitis leading to graft failure in lung transplant recipients. During acute rejection episodes, CD8(+) T cells can contribute to lung epithelial injury but the mechanisms promoting and controlling CD8-mediated injury in the lung are not well understood. To study the mechanisms regulating CD8(+) T cell-mediated lung rejection, we used a transgenic model in which adoptively transferred ovalbumin (OVA)-specific cytotoxic T lymphocytes (CTL) induce lung injury in mice expressing an ovalbumin transgene in the small airway epithelium of the lungs (CC10-OVA mice). The lung pathology is similar to findings in humans with acute lung transplant. In the presence of an intact immune response the inflammation resolves by day 30. Using CC10-OVA.RAG(-/-) mice, we found that CD4(+) T cells and ICOS(+/+) T cells were required for protection against lethal lung injury, while neutrophil depletion was not protective. In addition, CD4(+)Foxp3 (+) ICOS(+) T cells were enriched in the lungs of animals surviving lung injury and ICOS(+/+) Tregs promoted survival in animals that received ICOS(-/-) T cells. Direct comparison of ICOS(-/-) Tregs to ICOS(+/+) Tregs found defects in vitro but no differences in the ability of ICOS(-/-) Tregs to protect from lethal lung injury. These data suggest that ICOS affects Treg development but is not necessarily required for Treg effector function.
    PLoS ONE 01/2013; 8(8):e72955. · 3.73 Impact Factor

Publication Stats

21k Citations
2,875.66 Total Impact Points

Institutions

  • 1993–2014
    • Harvard Medical School
      • • Department of Microbiology and Immunobiology
      • • Department of Pathology
      • • Department of Genetics
      Boston, Massachusetts, United States
  • 2011
    • TWINCORE
      • Institute for Infection Immunology
      Hannover, Lower Saxony, Germany
  • 1996–2011
    • Massachusetts General Hospital
      • • Division of Rheumatology, Allergy & Immunology
      • • Division of Pulmonary & Critical Care Medicine
      • • Center for Immunology and Inflammatory Diseases
      • • Department of Medicine
      • • Allergy and Clinical Immunology Unit
      Boston, MA, United States
    • National Institute of Allergy and Infectious Diseases
      Maryland, United States
  • 2010
    • Howard Hughes Medical Institute
      Maryland, United States
  • 2009
    • University of Kentucky
      • Saha Cardiovascular Research Center
      Lexington, KY, United States
  • 2008
    • Istituto Clinico Humanitas IRCCS
      Rozzano, Lombardy, Italy
  • 2007
    • Medical University of Graz
      Gratz, Styria, Austria
  • 2006
    • Louisiana State University Health Sciences Center New Orleans
      • Microbiology, Immunology & Parasitology
      Baton Rouge, LA, United States
  • 1997–2003
    • Brigham and Women's Hospital
      • Department of Medicine
      Cambridge, MA, United States
  • 2002
    • Vanderbilt University
      • Division of Cardiovascular Medicine
      Nashville, MI, United States
  • 2001
    • Millennium Pharmaceuticals Inc
      Boston, Massachusetts, United States
  • 2000
    • Dartmouth–Hitchcock Medical Center
      Lebanon, New Hampshire, United States
  • 1997–2000
    • McGill University
      • Meakins-Christie Laboratories
      Montréal, Quebec, Canada
  • 1998
    • University of Wisconsin, Madison
      • Department of Medicine
      Madison, MS, United States
    • Cincinnati Children's Hospital Medical Center
      • Department of Pediatrics
      Cincinnati, OH, United States
  • 1987–1989
    • Memorial Sloan-Kettering Cancer Center
      • DeWitt Wallace Research Laboratory
      New York City, New York, United States