Andrea Polidori

South Coast Air Management Quality District, Diamond Bar, California, United States

Are you Andrea Polidori?

Claim your profile

Publications (41)124.63 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Particle number, size, and composition information is important for constraining aerosol effects on air quality, climate, and health. The composition of particles, especially from vehicular sources, may contain insoluble black carbon (BC) materials that modify particle nucleating properties. In this study, we develop a method to provide quantitative and real-time information on the water-insoluble components found in near-road aerosol sources. A water-based condensation particle counter (W-CPC) and a butanol-based CPC (B-CPC) were used to measure the particle number concentration. Both instruments were coupled with a scanning mobility particle sizer (SMPS) to record the particle number and size data. Real time water-insoluble particle mass was estimated from the difference in particle number concentration between the two CPCs; theoretical water-insoluble mass was calculated from the ideal hygro- scopicity single parameter κ-values. This online method was calibrated with test compounds and then applied to data collected from a field study. Ambient aerosol was sampled from a monitoring station located 15 m from the I-710 freeway in Long Beach, California. The results show that near-roadway emissions contain water-insoluble (BC and non-BC) components. Particle number and BC concentrations increase after changes in wind direction near the freeway on both weekday and weekend measurements. Particles were less hygroscopic (κ ∼ 0.2) before changes in wind direction from downwind to upwind of the freeway (κ > 0.6). Rapid changes in water-solubility can be captured with this technique. By assuming a two-component mixture, the water-insoluble mass fractions were inferred. BC shows a positive correlation with the water-insoluble mass however its presence may not account for the entire water-insoluble mass from the near-roadway source.Copyright 2014 American Association for Aerosol Research
    Aerosol Science and Technology 01/2014; 48(7). · 2.78 Impact Factor
  • 2013 European Aerosol Conference, Prague, Czech Republic; 09/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study compares the instrumental performance of three TSI water-based condensation particle counter (WCPC) models measuring particle number concentrations in close proximity (15 m) to a major freeway that has a significant level of heavy-duty diesel traffic. The study focuses on examining instrument biases and performance differences by different WCPC models under realistic field operational conditions. Three TSI models (3781, 3783, and 3785) were operated for one month in triplicate (nine units in total) in parallel with two sets of Scanning Mobility Particle Sizer (SMPS) spectrometers for the concurrent measurement of particle size distributions. Inter-model bias under different wind directions were first evaluated using 1-min raw data. Although all three WCPC models agreed well in upwind conditions (lower particle number concentrations, in the range of 103–104 particles cm−3), the three models' responses were significantly different under downwind conditions (higher particle number concentrations, above 104 particles cm−3). In an effort to increase inter-model linear correlations, we evaluated the results of using longer averaging time intervals. An averaging time of at least 15 min was found to achieve R2 values of 0.96 or higher when comparing all three models. Similar results were observed for intra-model comparisons for each of the three models. This strong linear relationship helped identify instrument bias related to particle number concentrations and particle size distributions. The TSI 3783 produced the highest particle counts, followed by TSI 3785, which reported 11% lower during downwind conditions than TSI 3783. TSI 3781 recorded particle number concentrations that were 24% lower than those observed by TSI 3783 during downwind condition. We found that TSI 3781 underestimated particles with a count median diameter less than 45 nm. Although the particle size dependency of instrument performance was found the most significant in TSI 3781, both models 3783 and 3785 showed somewhat size dependency. In addition, within each tested WCPC model, one unit was found to count significantly different and be more sensitive to particle size than the other two. Finally, exponential regression analysis was used to numerically quantify instrumental inter-model bias. Correction equations are proposed to adjust the TSI 3781 and 3785 data to the most recent model TSI 3783.
    Atmospheric Environment 04/2013; 68:151–161. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A study was conducted to investigate the effectiveness of three air purification systems in reducing the exposure of children to air contaminants inside nine classrooms of three Southern California schools. Continuous and integrated measurements were conducted to monitor the indoor and outdoor concentrations of ultrafine particles (UFPs), fine and coarse particulate matter (PM(2.5) and PM(10) , respectively), black carbon (BC), and volatile organic compounds (VOCs). An HVAC-based high-performance panel filter (HP-PF), a register-based air purifier (RS), and a stand-alone air cleaning system (SA) were tested alone and in different combinations for their ability to remove the monitored pollutants. The combination of a RS and a HP-PF was the most effective solution for lowering the indoor concentrations of BC, UFPs, and PM(2.5) , with study average reductions between 87 and 96%. When using the HP-PF alone, reductions close to 90% were also achieved. In all cases, air quality conditions were improved substantially with respect to the corresponding baseline (pre-existing) conditions. Data on the performance of the gas-absorbing media included in the RS and SA unit was inconclusive, and their effectiveness, lifetime, costs, and benefits must be further assessed before conclusions and recommendations can be made. Published 2012. This article is a US Government work and is in the public domain in the USA.
    Indoor Air 11/2012; · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sampling and handling artifacts can bias filter-based measurements of particulate organic carbon (OC). Several measurement-based methods for OC artifact reduction and/or estimation are currently used in research-grade field studies. OC frequently is not artifact-corrected in large routine sampling networks (e.g., U.S. Environmental Protection Agency (EPA)'s Chemical Speciation Network). In some cases, the OC artifact has been corrected using a regression method (RM) for artifact estimation. In this method, the gamma-intercept of the regression of the OC concentration on the fine particle (PM2.5) mass concentration is taken to be an estimate of the average OC sampling artifact (net of positive and negative artifacts). This paper discusses options for artifact correction in large routine sampling networks. Specifically, the goals are to (1) articulate the assumptions and limitations inherent to the RM, (2) describe other artifact correction approaches, and (3) suggest a cost-effective method for artifact correction in large monitoring networks. The RM assumes a linear relationship between measured OC and PM mass: a constant slope (OC mass fraction) and a constant intercept (RM artifact estimate). These assumptions are not always valid. Additionally, outliers and other individual data points can have a large influence on the RM artifact estimates. The RM yields results within the range of measurement-based methods for some datasets and not for others. Given that the adsorption of organic gases increases with atmospheric concentrations of organics, subtraction of an average artifact from all samples (e.g., across multiple sites) will underestimate OC for lower-concentration samples (e.g., clean sites) and overestimate OC for higher-concentration samples (e.g., polluted sites). For relatively accurate, simple, and cost-effective artifact OC estimation in large networks, the authors suggest backup filter sampling on at least 10% of sampling days at all sites with artifact correction on a sample-by-sample basis as described herein.
    Journal of the Air & Waste Management Association (1995) 06/2011; 61(6):696-710. · 1.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure-response information about particulate air-pollution constituents is needed to protect sensitive populations. Particulate matter <2.5 mm (PM2.5) components may induce oxidative stress through reactive-oxygen-species generation, including primary organics from combustion sources and secondary organics from photochemically oxidized volatile organic compounds. We evaluated differences in airway versus systemic inflammatory responses to primary versus secondary organic particle components, particle size fractions, and the potential of particles to induce cellular production of reactive oxygen species. A total of 60 elderly subjects contributed up to 12 weekly measurements of fractional exhaled nitric oxide (NO; airway inflammation biomarker), and plasma interleukin-6 (IL-6; systemic inflammation biomarker). PM2.5 mass fractions were PM0.25 (<0.25 μm) and PM0.25-2.5 (0.25-2.5 μm). Primary organic markers included PM2.5 primary organic carbon, and PM0.25 polycyclic aromatic hydrocarbons and hopanes. Secondary organic markers included PM2.5 secondary organic carbon, and PM0.25 water soluble organic carbon and n-alkanoic acids. Gaseous pollutants included carbon monoxide (CO) and nitrogen oxides (NOx; combustion emissions markers), and ozone (O3; photochemistry marker). To assess PM oxidative potential, we exposed rat alveolar macrophages in vitro to aqueous extracts of PM0.25 filters and measured reactive-oxygen-species production. Biomarker associations with exposures were evaluated with mixed-effects models. Secondary organic markers, PM0.25-2.5, and O3 were positively associated with exhaled NO. Primary organic markers, PM0.25, CO, and NOx were positively associated with IL-6. Reactive oxygen species were associated with both outcomes. Particle effects on airway versus systemic inflammation differ by composition, but overall particle potential to induce generation of cellular reactive oxygen species is related to both outcomes.
    Epidemiology (Cambridge, Mass.) 11/2010; 21(6):892-902. · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Air pollutants have not been associated with ambulatory electrocardiographic evidence of ST-segment depression ≥ 1 mm (probable cardiac ischemia). We previously found that markers of primary (combustion-related) organic aerosols and gases were positively associated with circulating biomarkers of inflammation and ambulatory blood pressure in the present cohort panel study of elderly subjects with coronary artery disease. We specifically aimed to evaluate whether exposure markers of primary organic aerosols and ultrafine particles were more strongly associated with ST-segment depression of ≥ 1 mm than were secondary organic aerosols or PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) mass. We evaluated relations of air pollutants to ambulatory electrocardiographic evidence of cardiac ischemia over 10 days in 38 subjects without ST depression on baseline electrocardiographs. Exposures were measured outdoors in retirement communities in the Los Angeles basin, including daily size-fractionated particle mass and hourly markers of primary and secondary organic aerosols and gases. Generalized estimating equations were used to estimate odds of hourly ST-segment depression (≥ 1 mm) from hourly air pollution exposures and to estimate relative rates of daily counts of ST-segment depression from daily average exposures, controlling for potential confounders. We found significant positive associations of hourly ST-segment depression with markers of combustion-related aerosols and gases averaged 1-hr through 3-4 days, but not secondary (photochemically aged) organic aerosols or ozone. The odds ratio per interquartile increase in 2-day average primary organic carbon (5.2 µg/m3) was 15.4 (95% confidence interval, 3.5-68.2). Daily counts of ST-segment depression were consistently associated with primary combustion markers and 2-day average quasi-ultrafine particles < 0.25 µm. Results suggest that exposure to quasi-ultrafine particles and combustion-related pollutants (predominantly from traffic) increase the risk of myocardial ischemia, coherent with our previous findings for systemic inflammation and blood pressure.
    Environmental Health Perspectives 10/2010; 119(2):196-202. · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence is needed regarding the air pollutant components and their sources responsible for associations between particle mass concentrations and human cardiovascular outcomes. We previously found associations between circulating biomarkers of inflammation and mass concentrations of quasi-ultrafine particles <or= 0.25 microm in aerodynamic diameter (PM0.25) in a panel cohort study of 60 elderly subjects with coronary artery disease living in the Los Angeles Basin. We reassessed biomarker associations with PM0.25 using new particle composition data. Weekly biomarkers of inflammation were plasma interleukin-6 (IL-6) and soluble tumor necrosis factor-alpha receptor II (sTNF-RII) (n = 578). Exposures included indoor and outdoor community organic PM0.25 constituents [polycyclic aromatic hydrocarbons (PAHs), hopanes, n-alkanes, organic acids, water-soluble organic carbon, and transition metals]. We analyzed the relation between biomarkers and exposures with mixed-effects models adjusted for potential confounders. Indoor and outdoor PAHs (low-, medium-, and high-molecular-weight PAHs), followed by hopanes (vehicle emissions tracer), were positively associated with biomarkers, but other organic components and transition metals were not. sTNF-RII increased by 135 pg/mL [95% confidence interval (CI), 45-225 pg/mL], and IL-6 increased by 0.27 pg/mL (95% CI, 0.10-0.44 pg/mL) per interquartile range increase of 0.56 ng/m3 outdoor total PAHs. Two-pollutant models of PM0.25 with PAHs showed that nominal associations of IL-6 and sTNF-RII with PM0.25 mass were completely confounded by PAHs. Vehicular emission sources estimated from chemical mass balance models were strongly correlated with PAHs (R = 0.71). Traffic emission sources of organic chemicals represented by PAHs are associated with increased systemic inflammation and explain associations with quasi-ultrafine particle mass.
    Environmental Health Perspectives 06/2010; 118(6):756-62. · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Associations between blood pressure (BP) and ambient air pollution have been inconsistent. No studies have used ambulatory BP monitoring and outdoor home air-pollutant measurements with time-activity-location data. We address these gaps in a study of 64 elderly subjects with coronary artery disease, living in retirement communities in the Los Angeles basin. Subjects were followed up for 10 days with hourly waking ambulatory BP monitoring (n = 6539 total measurements), hourly electronic diaries for perceived exertion and location, and real-time activity monitors (actigraphs). We measured hourly outdoor home pollutant gases, particle number, PM2.5, organic carbon, and black carbon. Data were analyzed with mixed models controlling for temperature, posture, actigraph activity, hour, community, and season. We found positive associations of systolic and diastolic BP with air pollutants. The strongest associations were with organic carbon (especially its estimated fossil-fuel- combustion fraction), multiday average exposures, and time periods when subjects were at home. An interquartile increase in 5-day average organic carbon (5.2 microg/m) was associated with 8.2 mm Hg higher mean systolic BP (95% confidence interval = 3.0-13.4) and 5.8 mm Hg higher mean diastolic BP (3.0-8.6). Associations of BP with 1-8 hour average air pollution were stronger with reports of moderate to strenuous physical exertion but not with higher actigraph motion. Associations were also stronger among 12 obese subjects. Exposure to primary organic components of fossil fuel combustion near the home were strongly associated with increased ambulatory BP in a population at potential risk of heart attack. Low fitness or obesity may increase the effects of pollutants.
    Epidemiology (Cambridge, Mass.) 03/2010; 21(3):396-404. · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms involving oxidative stress and inflammation have been proposed to explain associations of ambient air pollution with cardiovascular morbidity and mortality. Experimental evidence suggests that organic components and ultrafine particles (UFP) are important. We conducted a panel study of 60 elderly subjects with coronary artery disease living in retirement communities within the Los Angeles, California, air basin. Weekly biomarkers of inflammation included plasma interleukin-6, tumor necrosis factor-alpha soluble receptor II (sTNF-RII), soluble platelet selectin (sP-selectin), and C-reactive protein (CRP). Biomarkers of erythrocyte antioxidant activity included glutathione peroxidase-1 and superoxide dismutase. Exposures included outdoor home daily particle mass [particulate matter < 0.25, 0.25-2.5, and 2.5-10 microm in aerodynamic diameter (PM(0.25), PM(0.25-2.5), PM(2.5-10))], and hourly elemental and black carbon (EC-BC), estimated primary and secondary organic carbon (OC(pri), SOC), particle number (PN), carbon monoxide (CO), and nitrogen oxides-nitrogen dioxide (NO(x)-NO(2)). We analyzed the relation of biomarkers to exposures with mixed effects models adjusted for potential confounders. Primary combustion markers (EC-BC, OC(pri), CO, NO(x)-NO(2)), but not SOC, were positively associated with inflammatory biomarkers and inversely associated with erythrocyte anti-oxidant enzymes (n = 578). PN and PM(0.25) were more strongly associated with biomarkers than PM(0.25-2.5). Associations for all exposures were stronger during cooler periods when only OC(pri), PN, and NO(x) were higher. We found weaker associations with statin (sTNF-RII, CRP) and clopidogrel use (sP-selectin). Traffic-related air pollutants are associated with increased systemic inflammation, increased platelet activation, and decreased erythrocyte antioxidant enzyme activity, which may be partly behind air pollutant-related increases in systemic inflammation. Differences in association by particle size, OC fraction, and seasonal period suggest components carried by UFP are important.
    Environmental Health Perspectives 09/2009; 117(8):1232-8. · 7.26 Impact Factor
  • Source
    A Polidori, J Kwon, B J Turpin, C Weisel
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the effect of proximity to specific mobile, area, and point sources on the residential outdoor concentrations of fine particulate matter PM (PM(2.5)) and several of its particle components. Integrated (48-h) PM(2.5) samples were collected outside non-smoking residences in Elizabeth, NJ, between summer 1999 and spring 2001. Samples were analyzed for PM(2.5) mass, organic and elemental carbon (OC and EC, respectively), trace elements, particle-phase polycyclic aromatic hydrocarbons (p-PAHs), and other important particle species. Information about the proximity of the study homes to potential mobile and area sources of OC, EC, p-PAHs, sulfur (S), and selenium (Se) (including urban interstate highways, local roadways, the Newark International Airport, the Elizabeth seaport, and a nearby refinery in Linden, NJ) were retrieved from a database that included detailed emissions, meteorological, and geographical data for the study area. The dependence of residential outdoor concentrations on source proximity and on various meteorological parameters was then examined for each species by multiple linear regression analysis. As expected, the predicted ambient air concentrations of all particle species (except S, Se) decreased with increasing distance from the sources. Although the enhancement in PM(2.5) and OC levels outside the study homes closest to primary PM sources was modest (e.g., 1.6 and 2.5 times the background levels 37 m from interstate highways), the elevation of EC and p-PAH concentrations was substantial outside the closest study homes (i.e., about 20 times for p-PAHs 37 m from interstate highways and about 14 times for EC 192 m from the refinery in Linden, NJ). The predicted EC concentrations 192 and 500 m from the oil refinery were 22.8 and 3.0 microgC/m(3), compared with an urban background of 1 microgC/m(3). Thus, emissions from this source might dramatically affect EC exposure for residents living in its close proximity.
    Journal of Exposure Science and Environmental Epidemiology 08/2009; 20(5):457-68. · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three light-duty vehicles in five different configurations [a Honda Accord operating with diesel with a closed-coupled oxidation catalyst and an underfloor catalyst replaced in some tests with a diesel particle filter (DPF), a Toyota Corolla operating with gasoline, and a VW Golf alternatively operating with petrodiesel or biodiesel] were tested in a dynamometer facility to develop an improved understanding of the factors affecting the toxicity of particulate exhaust emissions. The vehicles were tested using a variety of real-world driving cycles, more than the certification test (New European Driving Cycle). Particle samples were collected and analyzed for elemental and organic carbon (EC and OC, respectively), water soluble and water insoluble organic carbon (WSOC and WISOC, respectively), and inorganic ions, and the emission rates (mg/km) for each vehicle/configuration were determined. A dithiothreitol (DTT) assay was used to assess the oxidative potential of the particulate matter (PM) samples. The DPF-equipped diesel and gasoline vehicles were characterized by the lowest overall PM mass emissions, while the diesel and biodiesel cars produced the most potent exhaust in terms of oxidative activity. When the DPF was fitted on the Honda Accord diesel vehicle, the mass emission rates and distance-based oxidative potential were both decreased by 98%, compared to the original configuration. Correlation analysis showed that the DTT consumption rate was highly associated with WSOC, WISOC, and OC (R = 0.98, 0.93, and 0.94, respectively), consistent with previous findings.
    Environmental Science and Technology 08/2009; 43(16):6334-40. · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quasi-ultrafine (quasi-UF) particulate matter (PM(0.25)) and its components were measured in indoor and outdoor environments at four retirement communities in Los Angeles Basin, California, as part of the Cardiovascular Health and Air Pollution Study (CHAPS). The present paper focuses on the characterization of the sources, organic constituents and indoor and outdoor relationships of quasi-UF PM. The average indoor/outdoor ratios of most of the measured polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were close to or slightly lower than 1, and the corresponding indoor-outdoor correlation coefficients (R) were always positive and, for the most part, moderately strong (median R was 0.60 for PAHs and 0.74 for hopanes and steranes). This may reflect the possible impact of outdoor sources on indoor PAHs, hopanes, and steranes. Conversely, indoor n-alkanes and n-alkanoic acids were likely to be influenced by indoor sources. A chemical mass balance model was applied to both indoor and outdoor speciated chemical measurements of quasi-UF PM. Among all apportioned sources of both indoor and outdoor particles, vehicular emissions was the one contributing the most to the PM(0.25) mass concentration measured at all sites (24-47% on average). PRACTICAL IMPLICATIONS: Although people (particularly the elderly retirees of our study) generally spend most of their time indoors, a major portion of the PM(0.25) particles they are exposed to comes from outdoor mobile sources. This is important because, an earlier investigation, also conducted within the Cardiovascular Health and Air Pollution Study (CHAPS), showed that indoor-infiltrated particles from mobile sources are more strongly correlated with adverse health effects observed in the elderly subjects living in the studied retirement communities compared with other particles found indoors (Delfino et al., 2008).
    Indoor Air 07/2009; 20(1):17-30. · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quasi-ultrafine particulate matter (PM0.25) and its components were measured in indoor and outdoor environments at four retirement communities in the Los Angeles basin, California, as part of the Cardiovascular Health and Air Pollution Study (CHAPS). The present work focuses on the identification and quantification of the sources, characterization of organic constituents and indoor and outdoor relationships of quasi-ultrafine PM. To the contrary to n-alkanes and n-alkanoic acids, the average indoor/outdoor ratio of most of the measured PAHs, hopanes and steranes were close to or slightly lower than 1, and indoor-outdoor correlation coefficients (R) were always positive and for most of these components moderate to strong (median R was 0.60 for PAHs and 0.74 for hopanes and steranes). This suggests that indoor PAHs, hopanes and steranes were mainly from outdoor origin, whereas indoor n-alkanes and n-alkanoic acids were significantly influenced by indoor sources. The Chemical Mass Balance (CMB) model was applied to both indoor and outdoor speciated chemical measurements of quasi-ultrafine PM. Vehicular sources had the highest contribution to PM0.25 among the apportioned sources for both indoor and outdoor particles at all sites (on average 24-47%). The contribution of mobile sources to indoor levels was similar to their corresponding outdoor estimates, thus indicating the high penetration of these sources indoors.
    04/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physical and chemical characteristics of indoor, outdoor, and personal quasi-ultrafine (<0.25 microm)-, accumulation (0.25-2.5 microm)-, and coarse (2.5-10 microm)-mode particles were studied at four different retirement communities in southern California between 2005 and 2007. Linear mixed-effects models and Spearman's correlation coefficients were then used to elucidate the relationships among size-segregated particulate matter (PM) levels, their particle components, and gaseous co-pollutants. Seasonal and spatial differences in the concentrations of all measured species were evaluated at all sites on the basis of P values for product terms. Outdoor quasi-ultrafine (UF) and, to a lesser extent, accumulation-mode particles were the two fractions that best correlated with outdoor concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), nitrogen oxides (NOx; during both phases of the study), and ozone (O3; only during the warmer months). Outdoor and indoor concentrations of CO, NO2, and NOx were more positively correlated to personal quasi-UF particles than larger size fractions. Despite these findings, it seems unlikely that these gaseous co-pollutants could confound epidemiologic associations between quasi-UF particles and adverse health effects. Overall, measured gaseous co-pollutants were weak surrogates of personal exposure to accumulation-mode PM, at least for subjects with similar exposure profiles and living in similar urban locations. Indoor sources were not significant contributors to personal exposure of accumulation and quasi-UF PM, which is predominantly influenced by primary emitted pollutants of outdoor origin. Correlations between personal coarse-mode PM and both outdoor and indoor gaseous co-pollutant concentrations were weak at all sites and during all seasons.
    Journal of the Air & Waste Management Association (1995) 04/2009; 59(4):392-404. · 1.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To characterize the impact of the October 2007 wildfires on the air quality of Los Angeles, integrated ambient particulate matter (PM) samples were collected near the University of Southern California between October 24 and November 14, 2007. Samples were analyzed for different chemical species (i.e.,water-soluble organic carbon, water-soluble elements, and several organic compounds), and the redox activity of PM was evaluated using two different assays: the dithiothreitol (DTT) and macrophage reactive oxygen species (ROS) assays. Tracers of biomass burning such as potassium and levoglucosan were elevated by 2-fold during the fire period (October 24-28), compared to the postfire period (November 1-14). Water-soluble organic carbon (WSOC) concentrations were also higher during the fire event (170 and 78 microg/mg of PM, during fire and postfire, respectively). While the DTT activity (on a per PM mass basis) increased for samples collected during the fire event (0.024 nmol DTT/min x microg on October 24) compared to the postfire samples (0.005 nmol DTT/min x microg on November 14), the ROS activity appears to be unaffected by the wildfires, probably because these two assays are driven by different PM species. While the DTT assay reflected the redox potential of polar organic compounds, which are abundant in wood-smoke, the ROS assay was mainly influenced by transition metals (e.g., Fe, Cu, Cr, Zn, Ni, and V), emitted mostly by vehicular traffic and other combustion sources, but not by the wildfires.
    Environmental Science and Technology 03/2009; 43(3):954-60. · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Indoor and outdoor water soluble trace elements (TEs) were analyzed on quasi-ultrafine (UF), accumulation, and coarse PM filter samples collected at four retirement communities, three located in the San Gabriel Valley and one in Riverside, CA. Our analysis indicates that a complex mix of vehicular, industrial, and soil-related emissions was responsible for the elemental concentrations measured at the three San Gabriel sites, while regional transport, soil re-suspension and, to a lower degree, local traffic contributed to TE levels observed in Riverside. In the quasi-UF mode, the magnitude of indoor/outdoor concentration ratios (I/O) for elements of anthropogenic origin was highly variable, reflecting the spatial heterogeneity of combustion sources in the study area. Indoor/outdoor ratios in accumulation mode PM were closer to 1, and more homogeneous across sites, indicating that elements associated with this size fraction penetrate indoors with high efficiencies. The lowest overall I/O ratios were obtained for elements found in coarse particles, consistent with the fact that only a small portion of coarse outdoor PM infiltrates indoors. The potential of S and other TEs to serve as tracers of indoor-penetrated particles of outdoor origin was also examined. Our results suggest that using the I/O ratio of S (I/OS) as a surrogate of the infiltration factor for PM2.5 [Finf(PM2.5)] might lead to an overestimation of the indoor PM2.5 originating outdoors. This is in contrast with what was reported in previous studies conducted in the Eastern US, where S has been consistently used as a reliable tracer of outdoor PM2.5 infiltrating indoors. Our differences may be due to the fact that in the Los Angeles basin (and in general in the Western US) PM2.5 includes a number of semi-volatile labile species, such as ammonium nitrate and several organic compounds, which volatilize either entirely or to a substantial degree upon building entry.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 01/2009; · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomarkers of systemic inflammation have been associated with risk of cardiovascular morbidity and mortality. We aimed to clarify associations of particulate matter (PM) air pollution with systemic inflammation using models based on size-fractionated PM mass and markers of primary and secondary aerosols. We followed a panel of 29 nonsmoking elderly subjects with a history of coronary artery disease (CAD) living in retirement communities in the Los Angeles, California, air basin. Blood plasma biomarkers were measured weekly over 12 weeks and included C-reactive protein (CRP), fibrinogen, tumor necrosis factor-alpha (TNF-alpha) and its soluble receptor-II (sTNF-RII), interleukin-6 (IL-6) and its soluble receptor (IL-6sR), fibrin D-dimer, soluble platelet selectin (sP-selectin), soluble vascular cell adhesion molecule-1 (sVCAM-1), intracellular adhesion molecule-1 (sICAM-1), and myeloperoxidase (MPO). To assess changes in antioxidant capacity, we assayed erythrocyte lysates for glutathione peroxidase-1 (GPx-1) and copper-zinc superoxide dismutase (Cu,Zn-SOD) activities. We measured indoor and outdoor home daily size-fractionated PM mass, and hourly pollutant gases, total particle number (PN), fine PM elemental carbon (EC) and organic carbon (OC), estimated secondary organic aerosol (SOA) and primary OC (OCpri) from total OC, and black carbon (BC). We analyzed data with mixed models controlling for temperature and excluding weeks with infections. We found significant positive associations for CRP, IL-6, sTNF-RII, and sP-selectin with outdoor and/or indoor concentrations of quasi-ultrafine PM < or = 0.25 microm in diameter, EC, OCpri, BC, PN, carbon monoxide, and nitrogen dioxide from the current-day and multiday averages. We found consistent positive but largely nonsignificant coefficients for TNF-alpha, sVCAM-1, and sICAM-1, but not fibrinogen, IL-6sR, or D-dimer. We found inverse associations for erythrocyte Cu,Zn-SOD with these pollutants and other PM size fractions (0.25-2.5 and 2.5-10 microm). Inverse associations of GPx-1 and MPO with pollutants were largely nonsignificant. Indoor associations were often stronger for estimated indoor EC, OCpri, and PN of outdoor origin than for uncharacterized indoor measurements. There was no evidence for positive associations with SOA. Results suggest that traffic emission sources of OCpri and quasi-ultrafine particles lead to increased systemic inflammation and platelet activation and decreased antioxidant enzyme activity in elderly people with CAD.
    Environmental Health Perspectives 07/2008; 116(7):898-906. · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measurements of organic carbon compounds in both the gas and particle phases made upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC) in the atmosphere over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 μgC m−3 from the cleanest site (Trinidad Head) to the most polluted (Mexico City). Organic aerosol makes up 3–17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketone and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source to sink.
    Atmospheric Chemistry and Physics. 01/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH) content, and the physical/chemical characteristics of aerosols collected a) in Wilmington (CA) near the Los Angeles port and close to 2 major freeways, and b) at a dynamometer testing facility in downtown Los Angeles (CA), where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4-8 times higher at 09:00–11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converter) were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (μg/m3) and the measured photo-electric aerosol sensor signal (fA) was also established. Estimated ambient p-PAH concentrations (Average=0.64 ng/m3; Standard deviation=0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day) lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a significant part of the total lung-cancer risk attributable to "black" carbon.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 01/2008; · 5.51 Impact Factor

Publication Stats

786 Citations
124.63 Total Impact Points

Institutions

  • 2012–2014
    • South Coast Air Management Quality District
      Diamond Bar, California, United States
  • 2004–2011
    • Rutgers, The State University of New Jersey
      • Department of Environmental Sciences
      New Brunswick, NJ, United States
  • 2008–2010
    • University of California, Irvine
      • Department of Medicine
      Irvine, CA, United States
  • 2009
    • Sharif University of Technology
      • Department of Civil Engineering
      Tehrān, Ostan-e Tehran, Iran
  • 2007–2009
    • University of Southern California
      • Department of Civil and Environmental Engineering
      Los Angeles, CA, United States
    • University of Wisconsin, Madison
      • Department of Civil and Environmental Engineering
      Mississippi, United States