Alexander A Sobko

Lomonosov Moscow State University, Moscow, Moscow, Russia

Are you Alexander A Sobko?

Claim your profile

Publications (14)43.09 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introducing a charged group near the N-terminus of gramicidin A (gA) is supposed to suppress its ability to form ion channels by restricting its head-to-head dimerisation. The present study dealt with the activity of [Lys1]gA, [Lys3]gA, [Glu1]gA, [Glu3]gA, [Lys2]gA, and [Lys5]gA in model membrane systems (planar lipid bilayers and liposomes) and erythrocytes. In contrast to the Glu-substituted peptides, the lysine derivatives of gA caused non-specific liposomal leakage monitored by fluorescence de-quenching of lipid vesicles loaded with carboxyfluorescein or other fluorescent dyes. Measurements of electrical current through a planar lipid membrane revealed formation of giant pores by Lys-substituted analogues, which depended on the presence of solvent in the bilayer lipid membrane. The efficacy of unselective pore formation in liposomes depended on the position of the lysine residue in the amino acid sequence, increasing in the row: [Lys2]gA < [Lys5]gA < [Lys1]gA < [Lys3]gA. The similar series of potency was exhibited by the Lys-substituted gA analogues in facilitating erythrocyte hemolysis, whereas the Glu-substituted analogues showed negligible hemolytic activity. Oligomerization of the Lys-substituted peptides is suggested to be involved in the process of nonselective pore formation.
    Biochimica et Biophysica Acta 06/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.
    Journal of Biological Chemistry 03/2011; 286(20):17831-40. · 4.65 Impact Factor
  • Biophysical Journal 01/2011; 100(3). · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The addition of the channel-forming domain of colicin E1 to liposomes elicited the transmembrane diffusion (flip-flop) of lipids concomitant to the release of the fluorescent dye from liposomes. Good correlation was found between kinetic and concentration dependences of the two processes. Both the liposome leakage and the lipid flip-flop were stimulated upon alkalinization of the buffer solution after colicin binding at acidic pH. These results in combination with the analysis of the data on colicin binding to liposomes provide evidence in favor of the validity of the toroidal (proteolipidic) pore model as the mechanism of colicin channel formation.
    Biochemistry (Moscow) 06/2010; 75(6):728-33. · 1.15 Impact Factor
  • Biophysical Journal 01/2009; 96(3). · 3.67 Impact Factor
  • Source
    Alexander A. Sobko, Tatyana I. Rokitskaya, Elena A. Kotova
    [Show abstract] [Hide abstract]
    ABSTRACT: The in vitro activity of many pore-forming toxins, in particular, the rate of increase in the membrane conductance induced by the channel-forming domain (P178) of colicin E1 is maximum at an acidic pH. However, after P178 binding at acidic conditions, a subsequent pH shift from 4 to 6 on both sides of the planar bilayer lipid membrane caused a large increase in the trans-membrane current which was solely due to an increase in the number of open channels. This effect required the presence of anionic lipid. Replacing the His440 residue of P178 by alanine eliminated the pH-shift effect thereby showing that it is associated with deprotonation of this histidine residue. It was concluded that alkalinization-induced weakening of the electrostatic interactions between colicin and the membrane surface facilitates conformational changes required for the transition of membrane-bound colicin molecules to an active channel state.
    Biochimica et Biophysica Acta 01/2009; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The channel-forming activity of gramicidin A derivatives carrying positively charged amino acid sequences at their C-termini was studied on planar bilayer lipid membranes and liposomes. We showed previously (FEBS Lett., 2005, vol. 579, pp. 5247–5252) that, at low concentrations, these peptides form classical cation-selective pores typical of gramicidin A, whereas, at high concentrations, they form large nonselective pores. The ability of the peptides to form nonselective pores, which was determined by the efflux of carboxyfluorescein, an organic dye, from liposomes, decreased substantially as the length of the gramicidin fragment in the series of cationic analogues was truncated. CD spectra showed that large pores are formed by peptides having both β6.3 single-stranded and β5.6 double-stranded helical conformations of the gramicidin fragment, with the C-terminal cationic sequence being extended. The dimerization of the peptides by the oxidation of the terminal cysteine promoted the formation of nonselective pores. It was shown that nonselective pores are not formed in membranes of erythrocytes, which may indicate a dependence of the channel-forming ability on the membrane type. The results may be of interest for the directed synthesis of peptides with antibacterial activity.
    Russian Journal of Bioorganic Chemistry 01/2007; 33(5):474-481. · 0.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The channel-forming activity of gramicidin A derivatives carrying positively charged amino acid sequences at their C-termini was studied on planar bilayer lipid membranes and liposomes. We showed previously that, at low concentrations, these peptides form classical cation-selective pores typical of gramicidin A, whereas, at high concentrations, they form large nonselective pores. The ability of the peptides to form nonselective pores, which was determined by the efflux of carboxyfluorescein, an organic dye, from liposomes, decreased substantially as the length of the gramicidin fragment in the series of cationic analogues was truncated. CD spectra showed that large pores are formed by peptides having both beta6.3 single-stranded and beta5.6 double-stranded helical conformations of the gramicidin fragment, with the C-terminal cationic sequence being extended. The dimerization of the peptides by the oxidation of the terminal cysteine promoted the formation of nonselective pores. It was shown that nonselective pores are not formed in membranes of erythrocytes, which may indicate a dependence of the channel-forming ability on the membrane type. The results may be of interest for the directed synthesis of peptides with antibacterial activity.
    Bioorganicheskaia khimiia 01/2007; 33(5):511-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties similar to those previously characterized, in 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (C20) or thinner membranes, whereas it formed a novel "large" conductance 600-pS state in thicker 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22) bilayers. Both channel states were anion-selective and voltage-gated and displayed a requirement for acidic pH. Lipids having negative spontaneous curvature inhibited the formation of both channels but increased the ratio of open 600 pS to 60 pS conductance states. Different diameters of small and large channels, 12 and 16 A, were determined from the dependence of single-channel conductance on the size of nonelectrolyte solute probes. Colicin-induced lipid "flip-flop" and the decrease in anion selectivity of the channel in the presence of negatively charged lipids implied a significant contribution of lipid to the structure of the channel, most readily described as toroidal organization of lipid and protein to form the channel pore.
    Journal of Biological Chemistry 06/2006; 281(20):14408-16. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: According to recent data, gramicidin A analogues having positively charged amino acid sequences at the C-termini exhibit two types of channel activity in lipid membranes: classical cation-selective channels and large unselective pores. The induction of unselective pores was shown here to strongly depend on the redox state of the membrane-bathing solution, if the gramicidin analogue contained a cysteine residue in the sequence GSGPKKKRKVC attached to the C-terminus. In particular, the addition of H2O2 led to an increase in the transmembrane current and the loss of cationic selectivity on planar bilayer lipid membranes and an increase in the carboxyfluorescein leakage of liposomes. The effect was observed at high concentration of the peptide while was absent at the single-channel level. It was concluded that oxidation led to possible formation of dimers of the peptide, which promoted the formation of large unselective pores.
    Biochimica et Biophysica Acta 05/2006; 1758(4):493-8. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on the model of a toroidal protein-lipid pore, the effect of calcium ions on colicin E1 channel was predicted. In electrophysiological experiments Ca2+ suppressed the activity of colicin E1 channels in membranes formed of diphytanoylphosphatidylglycerol, whereas no desorption of the protein occurred from the membrane surface. The effect of Ca2+ was not observed on membranes formed of diphytanoylphosphatidylcholine. Single-channel measurements revealed that Ca2+-induced reduction of the colicin-induced current across the negatively charged membrane was due to a decrease in the number of open colicin channels and not changes in their properties. In line with the toroidal model, the effect of Ca2+ on the colicin E1 channel-forming activity is explained by alteration of the membrane lipid curvature caused by electrostatic interaction of Ca2+ with negatively charged lipid head groups.
    Biochemistry (Moscow) 02/2006; 71(1):99-103. · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ion-channel activity of a series of gramicidin A analogues carrying charged amino-acid sequences on the C-terminus of the peptide was studied on planar bilayer lipid membranes and liposomes. It was found that the analogue with the positively charged sequence GSGRRRRSQS forms classical cationic pores at low concentrations and large unselective pores at high concentrations. The peptide was predominantly in the right-handed beta(6.3)-helical conformation in liposomes as shown by circular dichroism spectroscopy. The single-channel conductance of the large pore was estimated to be 320pS in 100mM choline chloride as judged from the fluctuation analysis of the multi-channel current. The analogue with the negatively charged sequence GSGEEEESQS exhibited solely classical cationic channel activity. The ability of a peptide to form different type of channels can be used in the search for broad-spectrum antibiotics.
    FEBS Letters 10/2005; 579(23):5247-52. · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The channel activity of colicin E1 was studied in planar lipid bilayers and liposomes. Colicin E1 pore-forming activity was found to depend on the curvature of the lipid bilayer, as judged by the effect on channel activity of curvature-modulating agents. In particular, the colicin-induced trans-membrane current was augmented by lysophosphatidylcholine and reduced by oleic acid, agents promoting positive and negative membrane curvature, respectively. The data obtained imply direct involvement of lipids in the formation of colicin E1-induced pore walls. It is inferred that the toroidal pore model previously validated for small antimicrobial peptides is applicable to colicin E1, a large protein that contains ten alpha-helices in its pore-forming domain.
    FEBS Letters 11/2004; 576(1-2):205-10. · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.
    Journal of Membrane Biology 06/2004; 199(1):51-62. · 2.48 Impact Factor