J R Carl

National Institutes of Health, Bethesda, MD, United States

Are you J R Carl?

Claim your profile

Publications (5)11.44 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent experiments on monkeys have indicated that the eye movements induced by brief translation of either the observer or the visual scene are a linear function of the inverse of the viewing distance. For the movements of the observer, the room was dark and responses were attributed to a translational vestibulo-ocular reflex (TVOR) that senses the motion through the otolith organs; for the movements of the scene, which elicit ocular following, the scene was projected and adjusted in size and speed so that the retinal stimulation was the same at all distances. The shared dependence on viewing distance was consistent with the hypothesis that the TVOR and ocular following are synergistic and share central pathways. The present experiments looked for such dependencies on viewing distance in human subjects. When briefly accelerated along the interaural axis in the dark, human subjects generated compensatory eye movements that were also a linear function of the inverse of the viewing distance to a previously fixated target. These responses, which were attributed to the TVOR, were somewhat weaker than those previously recorded from monkeys using similar methods. When human subjects faced a tangent screen onto which patterned images were projected, brief motion of those images evoked ocular following responses that showed statistically significant dependence on viewing distance only with low-speed stimuli (10 degrees/s). This dependence was at best weak and in the reverse direction of that seen with the TVOR, i.e., responses increased as viewing distance increased. We suggest that in generating an internal estimate of viewing distance subjects may have used a confounding cue in the ocular-following paradigm--the size of the projected scene--which was varied directly with the viewing distance in these experiments (in order to preserve the size of the retinal image). When movements of the subject were randomly interleaved with the movements of the scene--to encourage the expectation of ego-motion--the dependence of ocular following on viewing distance altered significantly: with higher speed stimuli (40 degrees/s) many responses (63%) now increased significantly as viewing distance decreased, though less vigorously than the TVOR. We suggest that the expectation of motion results in the subject placing greater weight on cues such as vergence and accommodation that provide veridical distance information in our experimental situation: cue selection is context specific.
    Experimental Brain Research 02/1994; 100(3):484-94. · 2.22 Impact Factor
  • R S Gellman, J R Carl
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. We studied the latencies and amplitudes of saccades to moving targets in normal human subjects. Targets underwent ramp or step-ramp motions. The goal was to determine how the saccadic system uses information about target velocity. 2. For simple ramp motion saccadic latency decreased as target speed increased. A threshold distance model, which assumes that the target has to move a minimum distance before saccadic processing starts, provided a good fit to the responses of all four subjects and explains discrepancies between previously published findings. 3. A double step experiment showed that target position may have some effect on saccadic amplitude when sampled approximately 70 ms before saccade onset, but it must be sampled at least 140 ms before onset for an accurate saccade to occur. 4. Saccades to simple ramp targets approximated the target position 55 ms before saccade onset. Based on our double step results, this is more compensation than possible by a simple position estimate and implies extrapolation of target motion by the saccadic system. The lack of complete compensation may be due to an underestimate of the target speed and/or of the saccadic latency. 5. A delayed-saccade paradigm resulted in saccades with a longer, constant latency and allowed longer viewing of target motion. These saccades accounted for all but approximately 20 ms of target motion, suggesting that with more processing time of target motion a better extrapolation may be generated. 6. In a step-ramp paradigm the target stepped in one direction, then moved smoothly in the opposite direction. Saccades in this paradigm could be made in either the direction of the step or in the direction of target motion: the direction and latency were determined solely by the time at which the target crossed the fixation point. This time must be calculated from target speed and position, implying that the saccadic system must use speed information to adjust latency or to cancel unnecessary saccades.
    Experimental Brain Research 02/1991; 84(3):660-7. · 2.22 Impact Factor
  • R S Gellman, J R Carl
    [Show abstract] [Hide abstract]
    ABSTRACT: We used a double-step paradigm to examine saccadic responses occurring at short intervals (50-150 ms) after the presentation of a 2-8 degrees step. Saccades occurring 60-110 ms after the second step had amplitudes independent of the step size. The amplitudes scaled to step size for intervals greater than 110 ms. These findings suggest that there is an early period of saccadic goal processing during which only information about the hemispheric location, but not the amplitude, of the target motion is available.
    Experimental Brain Research 02/1991; 87(2):433-7. · 2.22 Impact Factor
  • Source
    R S Gellman, J R Carl, F A Miles
    [Show abstract] [Hide abstract]
    ABSTRACT: The ocular-following responses elicited by brief unexpected movements of the visual scene were studied in human subjects. Response latencies varied with the type of stimulus and decreased systematically with increasing stimulus speed but, unlike those of monkeys, were not solely determined by the temporal frequency generated by sine-wave stimuli. Minimum latencies (70-75 ms) were considerably shorter than those reported for other visually driven eye movements. The magnitude of the responses to sine-wave stimuli changed markedly with stimulus speed and only slightly with spatial frequency over the ranges used. When normalized with respect to spatial frequency, all responses shared the same dependence on temporal frequency (band-pass characteristics with a peak at 16 Hz), indicating that temporal frequency, rather than speed per se, was the limiting factor over the entire range examined. This suggests that the underlying motion detectors respond to the local changes in luminance associated with the motion of the scene. Movements of the scene in the immediate wake of a saccadic eye movement were on average twice as effective as movements 600 ms later: post-saccadic enhancement. Less enhancement was seen in the wake of saccade-like shifts of the scene, which themselves elicited weak ocular following, something not seen in the wake of real saccades. We suggest that there are central mechanisms that, on the one hand, prevent the ocular-following system from tracking the visual disturbances created by saccades but, on the other, promote tracking of any subsequent disturbance and thereby help to suppress post-saccadic drift. Partitioning the visual scene into central and peripheral regions revealed that motion in the periphery can exert a weak modulatory influence on ocular-following responses resulting from motion at the center. We suggest that this may help the moving observer to stabilize his/her eyes on nearby stationary objects.
    Visual Neuroscience 09/1990; 5(2):107-22. · 1.48 Impact Factor
  • J R Carl, R S Gellman
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied pursuit eye movements in seven normal human subjects with the scleral search-coil technique. The initial eye movements in response to unpredictable changes in target motion were analyzed to determine the effect of target velocity and position on the latency and acceleration of the response. By restricting our analysis to the presaccadic portion of the response we were able to eliminate any saccadic interactions, and the randomized stimulus presentation minimized anticipatory responses. This approach has allowed us to characterize a part of the smooth-pursuit system that is dependent primarily on retinal image properties. The latency of the smooth-pursuit response was very consistent, with a mean of 100 +/- 5 ms to targets moving 5 degrees/s or faster. The responses were the same whether the velocity step was presented when the target was initially stationary or after tracking was established. The latency did increase for lower velocity targets; this increase was well described by a latency model requiring a minimum target movement of 0.028 degrees, in addition to a fixed processing time of 98 ms. The presaccadic accelerations were fairly low, and increased with target velocity until an acceleration of about 50 degrees/s2 was reached for target velocities of 10 degrees/s. Higher velocities produced only a slight increase in eye acceleration. When the target motion was adjusted so that the retinal image slip occurred at increasing distances from the fovea, the accelerations declined until no presaccadic response was measurable when the image slip started 15 degrees from the fovea. The smooth-pursuit response to a step of target position was a brief acceleration; this response occurred even when an oppositely directed velocity stimulus was present. The latency of the pursuit response to such a step was also approximately 100 ms. This result seems consistent with the idea that sensory pathways act as a low-pass spatiotemporal filter of the retinal input, effectively converting position steps into briefly moving stimuli. There was a large asymmetry in the responses to position steps: the accelerations were much greater when the position step of the target was away from the direction of tracking, compared with steps in the direction of tracking. The asymmetry may be due to the addition of a fixed slowing of the eyes whenever the target image disappears from the foveal region. When saccades were delayed by step-ramp stimuli, eye accelerations increased markedly approximately 200 ms after stimulus onset.(ABSTRACT TRUNCATED AT 400 WORDS)
    Journal of Neurophysiology 06/1987; 57(5):1446-63. · 3.30 Impact Factor

Publication Stats

366 Citations
11.44 Total Impact Points

Institutions

  • 1990–1994
    • National Institutes of Health
      • Laboratory of Sensorimotor Research
      Bethesda, MD, United States
  • 1991
    • The University of Calgary
      • Department of Clinical Neurosciences
      Calgary, Alberta, Canada