T. Ohsugi

Hiroshima University, Hirosima, Hiroshima, Japan

Are you T. Ohsugi?

Claim your profile

Publications (698)2762.25 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to their proximity, high dark matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of dark matter. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with dark matter halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged dark matter annihilation cross section for these new targets. If confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for dark matter particles with masses <∼ 20GeV annihilating via the b ̄b or τ+τ− channels.
    The Astrophysical Journal 03/2015; · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on gamma-ray observations of Milky Way dSphs based on 6 years of Fermi Large Area Telescope data processed with the new Pass 8 event-level analysis. None of the dSphs are significantly detected in gamma rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass <∼ 100 GeV annihilating via quark and τ -lepton channels.
    Physical Review Letters 03/2015; · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to their proximity, high dark matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of dark matter. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with dark matter halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged dark matter annihilation cross section for these new targets. If confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for dark matter particles with masses < 20 GeV annihilating via the b-bbar or tau+tau- channels.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25, using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes (|b| > 10◦), which is a 71% increase over the second catalog that was based on 2 years of data. There are 28 duplicate associations (two counterparts to the same gamma-ray source), thus 1563 of the 2192 high-latitude gamma-ray sources of the 3FGL catalog are AGNs. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. Based on their spectral properties, these sources are evenly split between FSRQs and BL Lacs. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., intermediate- and high-synchrotron-peaked FSRQs) have now been significantly detected.
    The Astrophysical Journal 01/2015; · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Tele- scope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predic- tions compared to previous work. More specifically, we estimate the cosmologically- induced gamma-ray intensity to have an uncertainty of a factor ∼ 20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. We quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.
    Journal of Cosmology and Astroparticle Physics 01/2015; 18242511(2412). · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor ~20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. We quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the third Fermi Large Area Telescope source catalog (3FGL) of sources in the 100 MeV–300 GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the 2FGL catalog, the 3FGL catalog incorporates twice as much data as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse γ-ray emission, a refined procedure for source detection, and im- proved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4σ significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 232 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1009 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are ac- tive galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate the contribution of unresolved sources to the Galactic diffuse emission is ∼3% at 1 GeV.
    The Astrophysical Journal Supplement Series 01/2015; · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray luminosity (E>100 MeV) averaged over $\sim$ 3 years of observations and peaking on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time delayed variability to follow about 25 days after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray flares of PKS 1830-211 have been detected by the LAT in the considered period and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the gamma rays flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum and with no significant correlation of X-ray flux with the gamma-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and gamma-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The γ-ray sky can be decomposed into individually detected sources, diffuse emis- sion attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Tele- scope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Im- provements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279±52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10−6 cm−2 s−1 sr−1 above 100 MeV, with an additional +15%/−30% systematic uncertainty due to the Galactic diffuse foregrounds.
    The Astrophysical Journal 10/2014; 799(43). DOI:10.1088/0004-637X/799/1/86 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed an optical and near-infrared instrument HONIR (Hiroshima Optical and Near-InfraRed camera) with imaging, spectroscopy, and polarimetry capabilities in two (one optical and one near-infrared) bands simultaneously. Imaging capability with a field of view of 10 arcmin by 10 arcmin has been available since 2011, as reported in the previous SPIE conference. In addition, spectroscopic and polarimetric optical components (grisms, an Wollaston prism, a half-wave plate, and focal masks) were installed in the instrument, which enabled us to perform spectroscopy and linear polarization measurement by imaging polarimetry and spectro-polarimetry. Spectral resolution of R = λ/(triangle)λ ~ 440 - 800 is achieved in spectroscopy using a slit mask with an 1".3 width. In polarimetry, instrumental polarization is less than ~0.05 % with stability of better than ~0.05 %, which is sufficiently small to achieve an aimed accuracy of polarization measurement of ~0.1 % at primal observing wavelengths.
    SPIE Astronomical Telescopes + Instrumentation; 08/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed a new readout system for the near-infrared detector VIRGO-2K (2kx2k HgCdTe array) installed in the optical-infrared simultaneous camera, HONIR, for the 1.5 m Kanata telescope at Higashi-Hiroshima observatory. The main goal of this development is to read out one frame within ~ 1 second through 16 output readout mode of the detector, in order to reduce the overhead time per exposure. The system is based on a CCD controller, Kiso Array Controller (KAC). We redesigned the analog part of KAC to fit VIRGO-2K. We employed a fully differential input circuit and a third order Bessel low-pass filter for noise reduction and a constant current system to improve the linearity of the detector. We set the cutoff frequency of the Bessel low-pass filter at the readout clock rate (120 kHz). We also set the constant current at 200 μA according to the data sheet of VIRGO-2K. We tested the new readout system at room temperature and confirmed that the low-pass filter works well as designed. The fluctuation of the current level of the constant current system is less than 2% for the typical output voltage range of VIRGO-2K (3.2-4.4 V). We measured the readout noise caused by the new readout system (connected to cooled multiplexer) and found that it is 30-40 μV rms, being comparable to or slightly higher than the typical readout noise of VIRGO-2K, ∼ 37 μV rms.
    SPIE Astronomical Telescopes + Instrumentation; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed optical and near-infrared multi-band linear polarimetry for highly reddened Type Ia SN 2014J appeared in M82. SN 2014J exhibits large polarization at shorter wavelengths, reaching $p\simeq 4.8$\% in $B$ band and steeply decreasing with wavelength, while it has almost constant position angle $\sim 40^{\circ}$ over the observed wavelength range. No significant temporal variation is found. Since intrinsic polarization of continuum light from a normal Type Ia supernova is generally weak ($\lesssim 0.3$\%) and the Galactic interstellar polarization component is likely negligibly small, the observed polarization is likely predominantly caused by the interstellar media within M82; however, we cannot completely exclude the possibility that it is caused by circumstellar media. The wavelength dependence of polarization can be explained by the empirical Serkowski-law at wavelengths shorter than $1 \mu$m and by an inverse power-law at wavelengths longer than $0.5 \mu$m. The peak polarization wavelength $\lambda_{\rm max}$ is quite short, $\lesssim 0.4\ \mu$m, suggesting the mean radius of polarizing dust grains is small ($< 0.1 \mu$m). The empirical law between $K$ and $\lambda_{\rm max}$ for the Galactic interstellar polarization is apparently broken, although the positive correlation between $R_{V}=A_{V}/E_{B-V}$ and $\lambda_{\rm max}$ seems to still hold. These facts suggest the nature of the dust grains in M82 is different from that in our Galaxy. These observed properties are similar to those in the other highly reddened Type Ia SNe 1986G and 2006X that have ever been polarimetrically observed, and this high probability suggests that such properties of dust grains are rather common in extragalaxies.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Temporal structural changes of protoplanetary disks surrounding T Tauri stars (TTSs) can cause magnitude variations of TTSs. On the other hand, variability is also expected due to cool spots and/or hot spots on the surface of the star, thus it is important to distinguish the causes of the observed variability. Our sample consists of 23 TTSs (22 classical T Tauri stars, 1 weak-lined T Tauri star) and 4 Herbig Ae/Be stars. The observations were performed over a period of about 3 months in the V, J, and K S band, simultaneously. We detected variability for all stars in the three bands (>0.05 mag in V, >0.09 mag in J, >0.09 mag in K S). Color-magnitude relations obtained between V, J, and K S bands suggest that stellar spots are not the only cause of variability for most of our targets. In addition, the data implies that six stellar systems contain larger grains than in the interstellar medium if the variability is only caused by extinction due to circumstellar matter.
    Proceedings of the International Astronomical Union 06/2014; DOI:10.1017/S1743921313008144
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results of optical polarimetric and multi-band photometric observations for gamma-ray loud narrow-line Seyfert 1 galaxy 1H 0323+342. This object has been monitored by 1.5 m Kanata telescope since 2012 September but following a gamma-ray flux enhancement detected by Fermi-LAT on MJD 56483 (2013 July 10) dense follow-up was performed by ten 0.5-2.0 m telescopes in Japan over one week. The 2-year R_C-band light curve showed clear brightening corresponding to the gamma-ray flux increase and then decayed gradually. The high state as a whole lasted for ~20 days, during which we clearly detected optical polarization from this object. The polarization degree (PD) of the source increased from 0-1% in quiescence to ~3% at maximum and then declined to the quiescent level, with the duration of the enhancement of less than 10 days. The moderate PD around the peak allowed us to precisely measure the daily polarization angle (PA). As a result, we found that the daily PAs were almost constant and aligned to the jet axis, suggesting that the magnetic field direction at the emission region is transverse to the jet. This implies either a presence of helical/toroidal magnetic field or transverse magnetic field compressed by shock(s). We also found small-amplitude intra-night variability during the 2-hour continuous exposure on a single night. We discuss these findings based on the turbulent multi-zone model recently advocated by Marscher (2014). Optical to ultraviolet (UV) spectrum showed a rising shape in the higher frequency and the UV magnitude measured by Swift/UVOT was steady even during the flaring state, suggesting that thermal emission from accretion disk is dominant in that band.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range ∼90 GeV-6 TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68±0.04 and 2.61±0.08 above ∼200 GeV, respectively.
    Physical Review Letters 04/2014; 112(15):151103. DOI:10.1103/PhysRevLett.112.151103 · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of rapidly variable Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE; E > 100 MeV) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar (FSRQ). We present multifrequency data of 4C +21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE was observed by MAGIC on 2010 May 3, soon after a γ-ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear connection was observed between the X-ray and γ-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime (230 GHz). We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of <6 gravitational radii, as one would expect from a prograde-rotating Kerr black hole.
    The Astrophysical Journal 04/2014; · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the ${\it Fermi}$ Large Area Telescope observations of the $\gamma$-ray emission from the Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range $\sim 90~$GeV-$6~$TeV (derived from a photon energy range $15~$GeV-$1~$TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index $2.68 \pm 0.04$ and $2.61 \pm 0.08$ above $\sim 200~$GeV, respectively.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of $z\ge0.6035$, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hours of VERITAS observations from three years, a multiwavelength light curve and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1$\pm0.3$)$\times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02$\pm0.08$)$\times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV. The measured differential very high energy (VHE; $E\ge100$ GeV) spectral indices are $\Gamma=$3.8$\pm$0.3, 4.3$\pm$0.6 and 4.5$\pm$0.2 in 2009, 2011 and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than $\tau=2$, where it is postulated that any variability would be small and occur on longer than year timescales if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.
    The Astrophysical Journal Letters 03/2014; 785(1). DOI:10.1088/2041-8205/785/1/L16 · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations of occultations of bright γ-ray sources by the Sun may reveal predicted pair halos around blazars and/or new physics, such as, e.g., hypothetical light dark matter particles—axions. We use Fermi Gamma-Ray Space Telescope (Fermi) data to analyze four occultations of blazar 3C 279 by the Sun on October 8 each year from 2008 to 2011. A combined analysis of the observations of these occultations allows a point-like source at the position of 3C 279 to be detected with significance of ≈3σ, but does not reveal any significant excess over the flux expected from the quiescent Sun. The likelihood ratio test rules out complete transparency of the Sun to the blazar γ-ray emission at a 3σ confidence level.
    The Astrophysical Journal 03/2014; 784(2):7. DOI:10.1088/0004-637X/784/2/118 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gamma-ray-detected blazar 3C 454.3 exhibits dramatic flux and polarization variations in the optical and near-infrared bands. In December 2010, the object emitted a very bright outburst. We monitored it for approximately four years (including the 2010 outburst) by optical and near-infrared photopolarimetry. During the 2010 outburst, the object emitted two rapid, redder brightenings, at which the polarization degrees (PDs) in both bands increased significantly and the bands exhibited a frequency-dependent polarization. The observed frequency-dependent polarization leads us to propose that the polarization vector is composed of two vectors. Therefore, we separate the observed polarization vectors into short and long-term components that we attribute to the emissions of the rapid brightenings and the outburst that varied the timescale of days and months, respectively. The estimated PD of the short-term component is greater than the maximum observed PD and is close to the theoretical maximum PD. We constrain the bulk Lorentz factors and inclination angles between the jet axis and the line of sight from the estimated PDs. In this case, the inclination angle of the emitting region of short-term component from the first rapid brightening should be equal to 90$^{\circ}$, because the estimated PD of the short-term component was approximately equal to the theoretical maximum PD. Thus, the Doppler factor at the emitting region of the first rapid brightening should be equal to the bulk Lorentz factor.
    The Astrophysical Journal 02/2014; 784(2). DOI:10.1088/0004-637X/784/2/141 · 6.28 Impact Factor

Publication Stats

12k Citations
2,762.25 Total Impact Points

Institutions

  • 1931–2014
    • Hiroshima University
      • • Division of Physical Sciences
      • • Hiroshima Astrophysical Science Center (HASC)
      • • Faculty of Science
      Hirosima, Hiroshima, Japan
  • 2012–2013
    • Deutsches Elektronen-Synchrotron
      Hamburg, Hamburg, Germany
  • 2010–2012
    • University of Freiburg
      • Faculty of Mathematics and Physics
      Freiburg, Lower Saxony, Germany
    • INFN - Istituto Nazionale di Fisica Nucleare
      Frascati, Latium, Italy
    • Stanford University
      • Department of Physics
      Palo Alto, California, United States
    • University of Washington Seattle
      • Department of Physics
      Seattle, Washington, United States
  • 2011
    • Università degli Studi di Trieste
      • Department of Physics
      Trst, Friuli Venezia Giulia, Italy
  • 2008–2011
    • National Academy of Sciences
      Washington, Washington, D.C., United States
    • Nagoya University
      Nagoya, Aichi, Japan
  • 2002–2011
    • Università di Pisa
      • Department of Physics "E.Fermi"
      Pisa, Tuscany, Italy
  • 2009
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      State College, PA, United States
  • 2002–2006
    • University of Florida
      • Department of Materials Science and Engineering
      Gainesville, Florida, United States
  • 2000–2004
    • Academia Sinica
      • Institute of Physics
      Taipei, Taipei, Taiwan
    • University of Bergen
      Bergen, Hordaland, Norway
  • 1990–2003
    • Okayama University
      • Department of Physics
      Okayama, Okayama, Japan
  • 2001–2002
    • High Energy Accelerator Research Organization
      • Institute of Particle and Nuclear Studies
      Tsukuba, Ibaraki, Japan
  • 2000–2002
    • Lawrence Berkeley National Laboratory
      Berkeley, California, United States
  • 1994–2002
    • University of California, Santa Cruz
      • Institute for Particle Physics
      Santa Cruz, California, United States
  • 1996–1999
    • Argonne National Laboratory
      • Division of X-ray Science
      Lemont, Illinois, United States
  • 1998
    • University of Oslo
      Kristiania (historical), Oslo, Norway
  • 1993–1998
    • University of Helsinki
      Helsinki, Uusimaa, Finland
  • 1995
    • Japan Synchrotron Radiation Research Institute (JASRI)
      Tatsuno, Hyōgo, Japan
  • 1988
    • Meiji Gakuin University
      Yokohama, Kanagawa, Japan
    • HAMAMATSU Photonics K.K.
      Hamamatu, Shizuoka, Japan
  • 1984–1986
    • University of Occupational and Environmental Health
      Kitakyūshū, Fukuoka, Japan