Brad Hobson

Oregon State University, Corvallis, Oregon, United States

Are you Brad Hobson?

Claim your profile

Publications (7)11.5 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc is a micronutrient important in several biological processes including growth and development. We have limited knowledge on the impact of maternal zinc deficiency on zinc and zinc regulatory mechanisms in the developing embryo due to a lack of in vivo experimental models that allow us to directly study the effects of maternal zinc on embryonic development following implantation. To overcome this barrier, we have proposed to use zebrafish as a model organism to study the impact of zinc during development. The goal of the current study was to profile the mRNA expression of all the known zinc transporter genes in the zebrafish across embryonic and larval development and to quantify the embryonic zinc concentrations at these corresponding developmental time points. The SLC30A zinc transporter family (ZnT) and SLC39A family, Zir-,Irt-like protein (ZIP) zinc transporter proteins were profiled in zebrafish embryos at 0, 2, 6, 12, 24, 48 and 120 h post fertilization to capture expression patterns from a single cell through full development. We observed consistent embryonic zinc levels, but differential expression of several zinc transporters across development. These results suggest that zebrafish is an effective model organism to study the effects of zinc deficiency and further investigation is underway to identify possible molecular pathways that are dysregulated with maternal zinc deficiency.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 05/2011; 155(1):26-32. DOI:10.1016/j.cbpc.2011.05.002 · 2.83 Impact Factor
  • American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California; 04/2009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-tocopherol transfer protein (ATTP) null mice (ATTP-/-) have a systemic alpha-tocopherol (AT) deficiency, with their lung AT levels being < 10% of those in AT-replete ATTP(+/+) mice when fed a standard rodent chow diet. ATTP(+/+) and ATTP(-/-) mice (4 wk old male mice, n = 16 per group) were fed a standard diet (35 IU AT/kg diet) for 8-12 wk, exposed 6 h/day for 3 days to either to O(3) (0.5 ppm) or filtered air, then sacrificed. No significant differences in plasma or lung AT concentrations were observed in response to this level of O(3) exposure. Lung genomic responses of the lungs to O(3) were determined using Affymetrix 430A 2.0 arrays containing over 22,600 probe sets representing 14,000 well-characterized mouse genes. As compared with filtered air exposure, O(3) exposure resulted in 99 genes being differentially expressed in ATTP(-/-) mice, as compared to 52 differentially expressed genes in ATTP(+/+) mice. The data revealed an O(3)-induced upregulation of genes related to cell proliferation/DNA repair and inflammatory-immune responses in both ATTP(+/+) and ATTP(-/-) mice, with the expression of 22 genes being common to both, whereas 30 and 77 genes were unique to ATTP(+/+) and ATTP(-/-) mice, respectively. The expressions of O(3) sensitive genes-Timp1, Areg, Birc5 and Tnc-were seen to be further modulated by AT status. The present study reveals AT modulation of adaptive response of lung genome to O(3) exposure.
    Inhalation Toxicology 04/2009; 22(1):1-16. DOI:10.3109/08958370902838145 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcriptome of ataxic muscles from alpha-tocopherol transfer protein deficient (ATTP-KO), 23-month old, mice was compared with that of their normal littermates. Genes encoding sarcolipin (sln) and ubiquitin carboxyl-terminal hydrolase (uchl1) were over-expressed (> or =10-fold) in ataxic muscles. SLN is a 3.2 kDa membrane protein that binds to sarcoplasmic reticulum calcium ATPase, regulates Ca(+ +) transport and muscle relaxation-contraction cycles. UCHL1 is a 24.8 kDa member of proteosome proteins; it is over-expressed in myofibrillar myopathy and is associated with neurodegenerative diseases. Furthermore, six additional transcripts, three encoding thin-filament proteins and three encoding Ca(+ +) sensing proteins that participate in contraction-relaxation cycle, and eight transcripts that encode members of lysosomal proteins were also over-expressed in ataxic muscles. These observations suggest that chronic alpha-tocopherol (AT) deficiency activates critical genes of muscle contractility and protein degradation pathways, simultaneously. The magnitude of induction of sln and uchl1 was lower in asymptomatic, 8-month old, ATTP-KO mice and in 8-month old mice fed an AT-depleted diet. These studies suggest sln and uchl1 genes as novel targets of AT deficiency and may offer molecular correlates of well documented descriptions of neuromuscular dysfunctions in AT-deficient rodents. Since the neuromuscular deficits of ATTP-KO mice appear to be similar to those of patients with ATTP mutations, it is suggested that over-expression of sln and uchl1 may also contribute to AT-sensitive ataxia in humans.
    Free Radical Research 03/2009; 43(2):106-16. DOI:10.1080/10715760802616676 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-tocopherol transfer protein (ATTP) null mice (ATTP(-/-)) have a systemic deficiency of alpha-tocopherol (AT). The heart AT levels of ATTP(-/-) are <10% of those in ATTP(+/+) mice. The genomic responses of heart to AT deficiency were determined in 3 months old male ATTP(-/-) mice and compared with their ATTP(+/+) littermate controls using Affymetrix 430A 2.0 high density oligonucleotide arrays. Differential analysis of approximately 13000 genes identified repression of genes related to immune system and activation of genes related to lipid metabolism and inflammation with no significant change in the expression of classical antioxidant genes (catalase, superoxide dismutase, glutathione peroxidase) in ATTP(-/-) as compared to ATTP(+/+) mice. The present data identifies novel classes of AT sensitive genes in heart tissue.
    FEBS Letters 05/2007; 581(8):1572-8. DOI:10.1016/j.febslet.2007.03.017 · 3.34 Impact Factor
  • Society for Free Radical Biology and Medicine’s (SFRBM) 13th annual meeting, Denver, CO, USA; 11/2006
  • American Physiological Society (APS) conference on Physiological Genomics and Proteomics of Lung Disease, Nov 2–5, 2006., Fort Lauderdale, FL, USA; 11/2006