Fu-Yue Zeng

St. Jude Children's Research Hospital, Memphis, Tennessee, United States

Are you Fu-Yue Zeng?

Claim your profile

Publications (5)22.17 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Bone Morphogenetic Proteins (BMPs) are morphogens that play a major role in regulating development and homeostasis. Although BMPs are used for the treatment of bone and kidney disorders, their clinical use is limited due to the supra-physiological doses required for therapeutic efficacy causing severe side effects. Because recombinant BMPs are expensive to produce, small molecule activators of BMP signaling would be a cost-effective alternative with the added benefit of being potentially more easily deliverable. Here, we report our efforts to identify small molecule activators of BMP signaling. We have developed a cell-based assay to monitor BMP signaling by stably transfecting a BMP-responsive human cervical carcinoma cell line (C33A) with a reporter construct in which the expression of luciferase is driven by a multimerized BMP-responsive element from the Id1 promoter. A BMP-responsive clone C33A-2D2 was used to screen a bioactive library containing ∼5,600 small molecules. We identified four small molecules of the family of flavonoids all of which induced luciferase activity in a dose-dependent manner and ventralized zebrafish embryos. Two of the identified compounds induced Smad1, 5 phosphorylation (P-Smad), Id1 and Id2 expression in a dose-dependent manner demonstrating that our assays identified small molecule activators of BMP signaling.
    PLoS ONE 01/2013; 8(3):e59045. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Pantothenate kinase (PanK) catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis. PanK3 is stringently regulated by acetyl-CoA and uses an ordered kinetic mechanism with ATP as the leading substrate. Biochemical analysis of site-directed mutants indicates that pantothenate binds in a tunnel adjacent to the active site that is occupied by the pantothenate moiety of the acetyl-CoA regulator in the PanK3acetyl-CoA binary complex. A high-throughput screen for PanK3 inhibitors and activators was applied to a bioactive compound library. Thiazolidinediones, sulfonylureas and steroids were inhibitors, and fatty acyl-amides and tamoxifen were activators. The PanK3 activators and inhibitors either stimulated or repressed CoA biosynthesis in HepG2/C3A cells. The flexible allosteric acetyl-CoA regulatory domain of PanK3 also binds the substrates, pantothenate and pantetheine, and small molecule inhibitors and activators to modulate PanK3 activity.
    Chemistry & biology 08/2010; 17(8):892-902. · 6.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Patients with alveolar rhabdomyosarcoma (ARMS) have poorer response to conventional chemotherapy and lower survival rates than those with embryonal RMS (ERMS). To identify compounds that preferentially block the growth of ARMS, we conducted a small-scale screen of 160 kinase inhibitors against the ARMS cell line Rh30 and ERMS cell line RD and identified inhibitors of glycogen synthase kinase 3 (GSK3), including TWS119 as ARMS-selective inhibitors. GSK3 inhibitors inhibited cell proliferation and induced apoptosis more effectively in Rh30 than RD cells. Ectopic expression of fusion protein PAX3-FKHR in RD cells significantly increased their sensitivity to TWS119. Down-regulation of GSK3 by GSK3 inhibitors or siRNA significantly reduced the transcriptional activity of PAX3-FKHR. These results suggest that GSK3 is directly involved in regulating the transcriptional activity of PAX3-FKHR. Also, GSK3 phosphorylated PAX3-FKHR in vitro, suggesting that GSK3 might regulate PAX3-FKHR activity via phosphorylation. These findings support a novel mechanism of PAX3-FKHR regulation by GSK3 and provide a novel strategy to develop GSK inhibitors as anti-ARMS therapies.
    Biochemical and Biophysical Research Communications 12/2009; 391(1):1049-55. · 2.41 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Patients with alveolar rhabdomyosarcoma (ARMS) have poorer response to conventional chemotherapy and lower survival rates than those with embryonal RMS (ERMS). By high-throughput screening, we identified camptothecin as an ARMS-selective inhibitor. Camptothecin more efficiently inhibited proliferation and induced apoptosis in Rh30 (ARMS) than RD (ERMS) cells. Ectopic expression of the PAX3-FKHR (PF) fusion protein in RD cells significantly increased sensitivity, whereas siRNA knockdown of PF decreased sensitivity of Rh30 cells to camptothecin. The sensitization required a transcriptionally active PF, and camptothecin downregulated levels of PF protein. These findings suggest that it is feasible to develop agents that preferentially block the growth of ARMS.
    Cancer letters 06/2009; 284(2):157-64. · 4.86 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The human pregnane X receptor (hPXR) regulates the expression of critical drug metabolism enzymes. One of such enzymes, cytochrome P450 3A4 (CYP3A4), plays critical roles in drug metabolism in hepatocytes that are either quiescent or passing through the cell cycle. It has been well established that the expression of P450, such as CYP3A4, is markedly reduced during liver development or regeneration. Numerous studies have implicated cellular signaling pathways in modulating the functions of nuclear receptors, including hPXR. Here we report that inhibition of cyclin-dependent kinases (Cdks) by kenpaullone and roscovitine (two small molecule inhibitors of Cdks that we identified in a screen for compounds that activate hPXR) leads to activation of hPXR-mediated CYP3A4 gene expression in HepG2 human liver carcinoma cells. Consistent with this finding, activation of Cdk2 attenuates the activation of CYP3A4 gene expression. In vitro kinase assays revealed that Cdk2 directly phosphorylates hPXR. A phosphomimetic mutation of a putative Cdk phosphorylation site, Ser(350), significantly impairs the function of hPXR, whereas a phosphorylation-deficient mutation confers resistance to Cdk2. Using HepG2 that has been stably transfected with hPXR and the CYP3A4-luciferase reporter, enriched in different phases of the cell cycle, we found that hPXR-mediated CYP3A4 expression is greatly reduced in the S phase. Our results indicate for the first time that Cdk2 negatively regulates the activity of hPXR, and suggest an important role for Cdk2 in regulating hPXR activity and CYP3A4 expression in hepatocytes passing through the cell cycle, such as those in fetal or regenerating adult liver.
    Journal of Biological Chemistry 10/2008; 283(45):30650-7. · 4.65 Impact Factor