Patrice Filée

University of Liège, Liège, WAL, Belgium

Are you Patrice Filée?

Claim your profile

Publications (21)74.33 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Designing hybrid proteins is a major aspect of protein engineering and covers a very wide range of applications from basic research to medical applications. This review focuses on the use of class A β -lactamases as versatile scaffolds to design hybrid enzymes (referred to as β -lactamase hybrid proteins, BHPs) in which an exogenous peptide, protein or fragment thereof is inserted at various permissive positions. We discuss how BHPs can be specifically designed to create bifunctional proteins, to produce and to characterize proteins that are otherwise difficult to express, to determine the epitope of specific antibodies, to generate antibodies against nonimmunogenic epitopes, and to better understand the structure/function relationship of proteins.
    BioMed research international. 01/2013; 2013:827621.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nine neurodegenerative disorders, called polyglutamine (polyQ) diseases, are characterized by the formation of intranuclear amyloid-like aggregates by nine proteins containing a polyQ tract above a threshold length. These insoluble aggregates and/or some of their soluble precursors are thought to play a role in the pathogenesis. The mechanism by which polyQ expansions trigger the aggregation of the relevant proteins remains, however, unclear. In this work, polyQ tracts of different lengths were inserted into a solvent-exposed loop of the β-lactamase BlaP and the effects of these insertions on the properties of BlaP were investigated by a range of biophysical techniques. The insertion of up to 79 glutamines does not modify the structure of BlaP; it does, however, significantly destabilize the enzyme. The extent of destabilization is largely independent of the polyQ length, allowing us to study independently the effects intrinsic to the polyQ length and those related to the structural integrity of BlaP on the aggregating properties of the chimeras. Only chimeras with 55Q and 79Q readily form amyloid-like fibrils; therefore, similarly to the proteins associated with diseases, there is a threshold number of glutamines above which the chimeras aggregate into amyloid-like fibrils. Most importantly, the chimera containing 79Q forms amyloid-like fibrils at the same rate whether BlaP is folded or not, whereas the 55Q chimera aggregates into amyloid-like fibrils only if BlaP is unfolded. The threshold value for amyloid-like fibril formation depends, therefore, on the structural integrity of the β-lactamase moiety and thus on the steric and/or conformational constraints applied to the polyQ tract. These constraints have, however, no significant effect on the propensity of the 79Q tract to trigger fibril formation. These results suggest that the influence of the protein context on the aggregating properties of polyQ disease-associated proteins could be negligible when the latter contain particularly long polyQ tracts.
    PLoS ONE 01/2012; 7(3):e31253. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Irreversible accumulation of protein aggregates represents an important problem both in vivo and in vitro. The aggregation of proteins is of critical importance in a wide variety of biomedical situations, ranging from diseases (such as Alzheimer's and Parkinson's diseases) to the production (e.g. inclusion bodies), stability, storage and delivery of protein drugs. β-Cyclodextrin (β-CD) is a circular heptasaccharide characterized by a hydrophilic exterior and a hydrophobic interior ring structure. In this research, we studied the effects of a chemically modified β-CD (BCD07056), on the aggregating and refolding properties of BlaPChBD, a hybrid protein obtained by inserting the chitin binding domain of the human macrophage chitotriosidase into the class A β-lactamase BlaP from Bacillus licheniformis 749/I during its thermal denaturation. The results show that BCD07056 strongly increases the refolding yield of BlaPChBD after thermal denaturation and constitutes an excellent additive to stabilize the protein over time at room temperature. Our data suggest that BCD07056 acts early in the denaturation process by preventing the formation of an intermediate which leads to an aggregated state. Finally, the role of β-CD derivatives on the stability of proteins is discussed.
    Biochimica et Biophysica Acta 09/2011; 1814(9):1146-53. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant cutaneous resident cells. Three-dimensional chitosan nanofibrillar scaffolds produced by electrospinning were compared with evaporated films and freeze-dried sponges for their biological properties. The nanofibrillar structure strongly improved cell adhesion and proliferation in vitro. When implanted in mice, the nanofibrillar scaffold was colonized by mesenchymal cells and blood vessels. Accumulation of collagen fibrils was also observed. In contrast, sponges induced a foreign body granuloma. When used as a dressing covering full-thickness skin wounds in mice, chitosan nanofibrils induced a faster regeneration of both the epidermis and dermis compartments. Altogether our data illustrate the critical importance of the nanofibrillar structure of chitosan devices for their full biocompatibility and demonstrate the significant beneficial effect of chitosan as a wound-healing biomaterial.
    Biomacromolecules 08/2011; 12(9):3194-204. · 5.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work analyses the chitin-binding and catalytic domains of the human macrophage chitotriosidase, and investigates the physiological role of this glycoside hydrolase in a complex mechanism such as the innate immune system, especially its antifungal activity. Accordingly, we first analysed the ability of its chitin binding domain (ChBD) to interact with chitin embedded in fungal cell walls using the β-lactamase activity reporter system described in our previous work. The data showed that the chitin binding activity was related to the cell wall composition of the fungi strains and that their PNGase/Zymolyase treatments increased binding to fungal by increasing protein permeability. We also investigated the antifungal activity of the enzyme against Candida albicans. The antifungal properties of the complete chitotriosidase were analysed and compared to those of the isolated chitin binding and catalytic domains. The isolated catalytic domain but not the chitin binding domain was sufficient to provide antifungal activity. Furthermore, to explain the lack of obvious pathologic phenotypes in humans homozygous for a widespread mutation which renders chitotriosidase inactive, we postulated that the absence of an active chitotriosidase might be compensated by the expression of another human hydrolytic enzyme such as lysozyme. The comparison of the antifungal properties of chitotriosidase and lysozyme indicated that surprisingly, both enzymes have similar in vitro antifungal properties. Furthermore, despite its more efficient hydrolytic activity on chitin, the observed anti-fungal activity of chitotriosidase was lower than that of lysozyme. Finally, this antifungal duality between chitotriosidase and lysozyme is discussed in the context of innate immunity.
    Protein Science 06/2011; · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies are a commercially successful class of drug molecules and there are now a growing number of antibodies coupled to toxic payloads, which demonstrate clinical efficacy. Determining the precise epitope of therapeutic antibodies is beneficial in understanding the structure-activity relationship of the drug, but in many cases is not done due to the structural complexity of, in particular, conformational protein epitopes. Using the immunotoxin CAT-8015 as a test case, this study demonstrates that a new methodology, hybrid β-lactamase display, can be employed to elucidate a complex epitope on CD22. Following insertion of random CD22 gene fragments into a permissive site within β-lactamase, proteins expressed in Escherichia coli were first screened for correct folding by resistance to ampicillin and then selected by phage display for affinity to CAT-8015. The optimal protein region recognised by CAT-8015 could then be used as a tool for fine epitope mapping, using alanine-scanning analysis, demonstrating that this technology is well suited to the rapid characterisation of antibody epitopes.
    Protein Engineering Design and Selection 04/2011; 24(4):351-60. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant beta-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-psi beta-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant beta-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function.
    Proceedings of the National Academy of Sciences 12/2008; 105(44):16876-81. · 9.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The system described here allows the expression of protein fragments into a solvent-exposed loop of a carrier protein, the beta-lactamase BlaP. When using Escherichia coli constitutive expression vectors, a positive selection of antibioresistant bacteria expressing functional hybrid beta-lactamases is achieved in the presence of beta-lactams making further screening of correctly folded and secreted hybrid beta-lactamases easier. Protease-specific recognition sites have been engineered on both sides of the beta-lactamase permissive loop in order to cleave off the exogenous protein fragment from the carrier protein by an original two-step procedure. According to our data, this approach constitutes a suitable alternative for production of difficult to express protein domains. This work demonstrates that the use of BlaP as a carrier protein does not alter the biochemical activity and the native disulphide bridge formation of the inserted chitin binding domain of the human macrophage chitotriosidase. We also report that the beta-lactamase activity of the hybrid protein can be used to monitor interactions between the inserted protein fragments and its ligands and to screen neutralizing molecules.
    Protein Engineering Design and Selection 08/2008; 21(7):443-51. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The major allergen Der p 1 of the house dust mite Dermatophagoides pteronyssinus is a papain-like cysteine protease (CA1) produced as an inactive precursor and associated with allergic diseases. The propeptide of Der p 1 exhibits a specific fold that makes it unique in the CA1 propeptide family. In this study, we investigated the activation steps involved in the maturation of the recombinant protease Der p 1 expressed in Pichia pastoris and the interaction of the full-length and truncated soluble propeptides with their parent enzyme in terms of activity inhibition and BIAcore interaction analysis. According to our results, the activation of protease Der p 1 is a multistep mechanism that is characterized by at least two intermediates. The propeptide strongly inhibits unglycosylated and glycosylated recombinant Der p 1 (K(D)=7 nM) at neutral pH. This inhibition is pH dependent. It decreases from pH 7 to pH 4 and can be related to conformational changes of the propeptide characterized by an increase of its flexibility and formation of a molten globule state. Our results indicate that activation of the zymogen at pH 4 is a compromise between activity preservation and propeptide unfolding.
    Journal of Molecular Biology 12/2007; 374(1):170-85. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using genetic engineering technologies, the chitin-binding domain (ChBD) of the human macrophage chitotriosidase has been inserted into the host protein BlaP, a class A beta-lactamase produced by Bacillus licheniformis. The product of this construction behaved as a soluble chimeric protein that conserves both the capacity to bind chitin and to hydrolyze beta-lactam moiety. Here we describe the biochemical and biophysical properties of this protein (BlaPChBD). This work contributes to a better understanding of the reciprocal structural and functional effects of the insertion on the host protein scaffold and the heterologous structured protein fragments. The use of BlaP as a protein carrier represents an efficient approach to the functional study of heterologous protein fragments.
    Protein Science 11/2007; 16(10):2260-71. · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overgrowth of Clostridium perfringens clones with production of one or more of its toxin(s) results in diverse digestive and systemic pathologies in human and animals, such as cattle enterotoxaemia. The so-called beta2 toxin (CPB2) is the most recently described major toxin produced by C. perfringens. In this study, the cpb2 ORF (cpb2FM) from a cattle C. perfringens-associated enterotoxaemia was cloned and sequenced. The cpb2FM and its deduced nucleotide sequence clearly corresponded to the cpb2 allele considered as "consensus" and not to "atypical" allele, despite its "non-porcine" origin. Expression assays of the recombinant toxin CPB2FM were performed in Escherichia coli and Bacillus subtilis with the expression vector pBLTS72, and by genomic integration by double recombination in B. subtilis. Highest level of production was obtained with the expression vector in B. subtilis 168 strain. The recombinant CPB2FM protein was purified and a specific rabbit polyclonal antiserum was produced. Polyclonal antibodies could detect CPB2 production in supernatants of C. perfringens from enterotoxaemic cattle.
    Protein Expression and Purification 10/2007; 55(1):119-31. · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mapping of epitopes is a crucial step for the study of immune pathways, the engineering of vaccines and the development of immunoassays. In this work, the Bacillus licheniformis beta-lactamase BlaP has been engineered to display heterologous polypeptides in a permissive and solvent-exposed loop. When combined with phage display, this modified enzyme can be used for epitope mapping by cloning random gene fragments. The procedure presented in this paper allows the selection of large infectious phage libraries with high diversity and efficient beta-lactamase activities. A useful aspect of the proposed technique results from the possibility of using the beta-lactamase activity carried by phages to evaluate the proportion of immobilised phages during the successive enrichment steps of the library or competition experiments with the selected phages. Another advantage of the technique derives from the fact that the epitope is selected as a bifunctional hybrid protein, which can be overproduced and purified. The resulting recombinant protein associates an epitope with a specific and efficient enzymatic activity. This constitutes an original tool for immunoassay development. A virus influenza hemagglutinin (HA1)-gene fragment library has been generated with this system and used to identify a linear epitope.
    Journal of Immunological Methods 04/2007; 320(1-2):81-93. · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium perfringens has been implicated in a broad array of enteric infections including the fatal haemorrhagic enteritis/enterotoxaemia syndrome in cattle. The beta2 toxin (CPB2), encoded by cpb2, is suspected to be implicated in this syndrome. However, among C. perfringens isolates from cattle suspected of clostridial disease, an atypical allele was recently found to predominate at the cpb2 locus and atypical corresponding CPB2 proteins were shown to be poorly expressed, thus arguing against a biologically significant role of the beta2 toxin in clostridial diseases in cattle. This study compared genotype and phenotype of the beta2 toxin between C. perfringens isolates from a group of healthy calves (n=14, 87 isolates) and from a group of enterotoxaemic calves (n=8, 41 isolates). PCR results revealed the exclusive presence of the typical "consensus"cpb2 in the enterotoxaemic group. Western blot analysis demonstrated that the typical variant of CPB2 was often expressed in isolates from enterotoxaemic calves (43.9%) and infrequently in isolates from healthy cattle (6.9%). These data suggest that the typical variant of the CPB2 toxin may play a role in the pathogenesis of cattle enterotoxaemia.
    Veterinary Microbiology 03/2007; 120(1-2):151-7. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The serine penicillin-recognizing proteins have been extensively studied. They show a wide range of substrate specificities accompanied by multidomain features. Their adaptation capacity has resulted in the emergence of pathogenic bacteria resistant to beta-lactam antibiotics. The most divergent enzymatic activities in this protein family are those of the Ochrobactrum anthropi D-aminopeptidase and of the Streptomyces R61 D,D-carboxypeptidase/transpeptidase. With the help of structural data, we have attempted to identify the factors responsible for this opposite specificity. A loop deletion mutant of the Ochrobactrum anthropi D-aminopeptidase lost its original activity in favor of a new penicillin-binding activity. D-aminopeptidase activity of the deletion mutant can be restored by complementation with another deletion mutant corresponding to the noncatalytic domain of the wild-type enzyme. By a second step site-directed mutagenesis, the specificity of the Ochrobactrum anthropi D-aminopeptidase was inverted to a D,D-carboxypeptidase specificity. These results imply a core enzyme with high diversity potential surrounded by specificity modulators. It is the first example of drastic specificity change in the serine penicillin-recognizing proteins. These results open new perspectives in the conception of new enzymes with nonnatural specificities. The structure/specificity relationship in the serine penicillin-recognizing proteins are discussed.
    Protein Science 10/2005; 14(9):2296-303. · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The novel method described in this paper combines the use of blaI, which encodes a repressor involved in Bacillus licheniformis BlaP beta-lactamase regulation, an antibiotic resistance gene, and a B. subtilis strain (BS1541) that is conditionally auxotrophic for lysine. We constructed a BlaI cassette containing blaI and the spectinomycin resistance genes and two short direct repeat DNA sequences, one at each extremity of the cassette. The BS1541 strain was obtained by replacing the B. subtilis P(lysA) promoter with that of the P(blaP) beta-lactamase promoter. In the resulting strain, the cloning of the blaI repressor gene confers lysine auxotrophy to BS1541. After integration of the BlaI cassette into the chromosome of a conditionally lys-auxotrophic (BS1541) strain by homologous recombination and positive selection for spectinomycin resistance, the eviction of the BlaI cassette was achieved by single crossover between the two short direct repeat sequences. This strategy was successfully used to inactivate a single gene and to introduce a gene of interest in the Bacillus chromosome. In both cases the resulting strains are free of selection marker. This allows the use of the BlaI cassette to repeatedly further modify the Bacillus chromosome.
    Applied and Environmental Microbiology 01/2005; 70(12):7241-50. · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Bacillus licheniformis 749/I BlaI repressor is a prokaryotic regulator that, in the absence of a beta-lactam antibiotic, prevents the transcription of the blaP gene, which encodes the BlaP beta-lactamase. The BlaI repressor is composed of two structural domains. The 82-residue NTD (N-terminal domain) is a DNA-binding domain, and the CTD (C-terminal domain) containing the next 46 residues is a dimerization domain. Recent studies have shown the existence of the monomeric, dimeric and tetrameric forms of BlaI in solution. In the present study, we analyse the equilibrium unfolding of BlaI in the presence of GdmCl (guanidinium chloride) using different techniques: intrinsic and ANS (8-anilinonaphthalene-l-sulphonic acid) fluorescence, far- and near-UV CD spectroscopy, cross-linking, analytical ultracentrifugation, size exclusion chromatography and NMR spectroscopy. In addition, the intact NTD and CTD were purified after proteolysis of BlaI by papain, and their unfolding by GdmCl was also studied. GdmCl-induced equilibrium unfolding was shown to be fully reversible for BlaI and for the two isolated fragments. The results demonstrate that the NTD and CTD of BlaI fold/unfold independently in a four-step process, with no significant co-operative interactions between them. During the first step, the unfolding of the BlaI CTD occurs, followed in the second step by the formation of an 'ANS-bound' intermediate state. Cross-linking and analytical ultracentrifugation experiments suggest that the dissociation of the dimer into two partially unfolded monomers takes place in the third step. Finally, the unfolding of the BlaI NTD occurs at a GdmCl concentration of approx. 4 M. In summary, it is shown that the BlaI CTD is structured, more flexible and less stable than the NTD upon GdmCl denaturation. These results contribute to the characterization of the BlaI dimerization domain (i.e. CTD) involved in the induction process.
    Biochemical Journal 12/2004; 384(Pt 1):179-90. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: beta-Lactamase and penicillin-binding protein PBP2' mediate staphylococcal resistance to beta-lactam antibiotics, which are otherwise highly clinically effective. Two repressors (BlaI and MecI) regulate expression of these inducible proteins. Here, we present the first solution structure of the 82 amino acid residue DNA-binding domain of Bacillus licheniformis BlaI which is very similar in primary sequence to the medically significant Staphyloccocal BlaI and MecI proteins. This structure is composed of a compact core of three alpha-helices and a three-stranded beta-sheet typical of the winged helix protein (WHP) family. The protein/DNA complex was studied by NMR chemical shift comparison between the free and complexed forms of BlaI. Residues involved in DNA interaction were identified and a WHP canonical model of interaction with the operators is proposed. In this model, specific contacts occur between the base-pairs of the TACA motif and conserved amino acid residues of the repressor helix H3. These results help toward understanding the repression and induction mechanism of the genes coding for beta-lactamase and PBP2'.
    Journal of Molecular Biology 10/2003; 333(4):711-20. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the absence of penicillin, the beta-lactamase encoding gene blaP of Bacillus licheniformis 749/I is negatively regulated by the transcriptional repressor BlaI. Three palindromic operator regions are recognized by BlaI: two in the blaP promoter (OP1 and OP2) and one (OP3) in the promoter of the blaI-blaR1 operon. In this study, the dissociation constant of the purified BlaI dimer was estimated at 25 microm by equilibrium ultracentrifugation. Quantitative Western blot analysis indicates that the intracellular concentrations of BlaI in B. licheniformis 749/I and Bacillus subtilis transformed by a multicopy plasmid harboring the beta-lactamase locus (blaP-blaI-blaR1) were lower than (1.9 microm) or in the same range as (75 microm) the dissociation constant, respectively. This suggests that BlaI is partially dimeric in the cytoplasm of these strains and interacts in vivo with its operators as a preformed dimer. This hypothesis is supported by band shift assays on an operator containing a randomized half-operator sequence. The global dissociation constants of the operator-BlaI dimer complexes were measured by band shift assays and estimated as K(d)(OP1) = 1.7 +/- 0.5 10(-15) m(2), K(d)(OP2) = 3.3 +/- 0.9 10(-15) m(2), and K(d)(OP3) = 10.5 +/- 2.5 10(-15) m(2). The role of the DNA binding properties of BlaI on the beta-lactamase regulation is discussed.
    Journal of Biological Chemistry 06/2003; 278(19):16482-7. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The induction of the Staphylococcus aureus BlaZ and Bacillus licheniformis 749/I BlaP beta-lactamases by beta-lactam antibiotics occurs according to similar processes. In both bacteria, the products of the blaI and blaRl genes share a high degree of sequence homology and act as repressors and penicillin-sensory transducers respectively. It has been shown in S. aureus that the BlaI repressor, which controls the expression of BlaZ negatively, is degraded after the addition of the inducer. In the present study,we followed the fate of BlaI during beta-lactamase induction in B. licheniformis 749/I and in a recombinant Bacillus subtilis 168 strain harbouring the pDML995 plasmid, which carries the B. licheniformis blaP, blaI and blaRl genes. In contrast to the situation in B. licheniformis 749/I, beta-lactamase induction in B.subtilis 168/pDML995 was not correlated with the proteolysis of BlaI. To exclude molecular variations undetectable by SDS-PAGE, two-dimensional gel electrophoresis was performed with cellular extracts from uninduced or induced B. subtilis 168/pDML995cells. No variation in the Blal isoelectric point was observed in induced cells, whereas the DNA-binding property was lost. Cross-linking experiments with dithiobis(succimidylpropionate) confirmed that, in uninduced recombinant B. subtilis cells, BlaI was present as a homodimer and that this situation was not altered in induced conditions. This latter result is incompatible with a mechanism of inactivation of BlaI by proteolysis and suggests that the inactivation of BlaI results from a non-covalent modification by a co-activator and that the subsequent proteolysis of BlaI might be a secondary phenomenon. In addition to the presence of this co-activator, our results show that the presence of penicillin stress is also required for full induction of beta-lactamase biosynthesis.
    Molecular Microbiology 06/2002; 44(3):685-94. · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The noncovalent complexes between the BlaI protein dimer (wild-type and GM2 mutant) and its double-stranded DNA operator were studied by nanospray mass spectrometry and tandem mass spectrometry (MS/MS). Reproducibility problems in the nanospray single-stage mass spectra are emphasized. The relative intensities depend greatly on the shape of the capillary tip and on the capillary-cone distance. This results in difficulties in assessing the relative stabilities of the complexes simply from MS(1) spectra of protein-DNA mixtures. Competition experiments using MS/MS are a better approach to determine relative binding affinities. A competition between histidine-tagged BlaIWT (BlaIWTHis) and the GM2 mutant revealed that the two proteins have similar affinities for the DNA operator, and that they co-dimerize to form heterocomplexes. The low sample consumption of nanospray allows MS/MS spectra to be recorded at different collision energies for different charge states with 1 microL of sample. The MS/MS experiments on the dimers reveal that the GM2 dimer is more kinetically stable in the gas phase than the wild-type dimer. The MS/MS experiments on the complexes shows that the two proteins require the same collision energy to dissociate from the complex. This indicates that the rate-limiting step in the monomer loss from the protein-DNA complex arises from the breaking of the protein-DNA interface rather than the protein-protein interface. The dissociation of the protein-DNA complex proceeds by the loss of a highly charged monomer (carrying about two-thirds of the total charge and one-third of the total mass). MS/MS experiments on a heterocomplex also show that the two proteins BlaIWTHis and BlaIGM2 have slightly different charge distributions in the fragments. This emphasizes the need for better understanding the dissociation mechanisms of biomolecular complexes.
    Rapid Communications in Mass Spectrometry 02/2002; 16(18):1723-8. · 2.51 Impact Factor