T. H. Sanders

North Carolina State University, Raleigh, North Carolina, United States

Are you T. H. Sanders?

Claim your profile

Publications (114)118.18 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Peanut (Arachis hypogaea L.) is an important crop grown worldwide for food and edible oil. The surge of peanut allergy in the past 25 years has profoundly impacted both affected individuals and the peanut and related food industries. In response, several strategies to mitigate peanut allergy have emerged to reduce/eliminate the allergenicity of peanuts or to better treat peanutallergic individuals. In this review, we give an overview of peanut allergy, with a focus on peanut proteins, including the impact of thermal processing on peanut protein structure and detection in food matrices. We discuss several strategies currently being investigated to mitigate peanut allergy, including genetic engineering, novel processing strategies, and immunotherapy in terms of mechanisms, recent research, and limitations. All strategies are discussed with considerations for both peanut-allergic individuals and the numerous industries/government agencies involved throughout peanut production and utilization. Expected final online publication date for the Annual Review of Food Science and Technology Volume 5 is February 28, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Review of Food Science and Technology 01/2014; · 4.68 Impact Factor
  • Brittany L. White, Timothy H. Sanders, Jack P. Davis
    [Show abstract] [Hide abstract]
    ABSTRACT: Our lab has developed a process for sequestering aflatoxin from contaminated peanut meal (PM) using commercial bentonite clays while protein is simultaneously extracted and hydrolyzed by a commercial protease. The objectives of this study were to sequence generated peptides and evaluate their potential ACE-inhibitory properties. Aflatoxin in the unprocessed PM was 610 μg kg−1 compared to 9.7 μg kg−1 on a dry weight basis in the 120 min hydrolysate. This hydrolysate displayed significant ACE-inhibitory activity with an IC50 of 295.1 μg mL−1. Ultrafiltration and size exclusion chromatography (SEC) improved the ACE-inhibitory properties, with the SEC fraction containing the smallest peptides having an IC50 = 44.4 μg mL−1. Additionally, 271 unique peptides were identified by nanoLC-MS/MS, of which 147 belonged to major seed storage proteins. This advanced characterization data will ultimately allow for more efficient production of hydrolysates with ACE-inhibitory activity or other bioactivities of interest from PM.
    LWT - Food Science and Technology. 01/2014; 56(2):537–542.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Peanut flour is a high-protein, low-oil, powdered material prepared from roasted peanut seed. In addition to being a well-established food ingredient, peanut flour is also the active ingredient in peanut oral immunotherapy trials. Enzymatic hydrolysis was evaluated as a processing strategy to generate hydrolysates from peanut flour with reduced allergenicity. Methods: Soluble fractions of 10% (w/v) light roasted peanut flour dispersions were hydrolyzed with the following proteases: Alcalase (pH 8.0, 60°C), pepsin (pH 2.0, 37°C) or Flavourzyme (pH 7.0, 50°C) for 60 min. Western blotting, inhibition ELISA and basophil activation tests were used to examine IgE reactivity. Results: Western blotting experiments revealed the hydrolysates retained IgE binding reactivity and these IgE-reactive peptides were primarily Ara h 2 fragments regardless of the protease tested. Inhibition ELISA assays demonstrated that each of the hydrolysates had decreased capacity to bind peanut-specific IgE compared with nonhydrolyzed controls. Basophil activation tests revealed that all hydrolysates were comparable (p > 0.05) to nonhydrolyzed controls in IgE cross-linking capacity. Conclusions: These results indicate that hydrolysis of peanut flour reduced IgE binding capacity; however, IgE cross-linking capacity during hydrolysis was retained, thus suggesting such hydrolysates are not hypoallergenic.
    International Archives of Allergy and Immunology 07/2013; 162(2):25-32. · 2.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peanut meal (PM) is the high protein by-product remaining after commercial extraction of peanut oil. PM applications are limited because of typical high concentrations of aflatoxin. For the first time, pilot-scale extraction of protein and sequestration of aflatoxin from PM were evaluated. Aqueous PM dispersions were mixed with two commercial bentonite clays and Alcalase in a jacketed mixer, hydrolysed for 1 h, heated to inactivate protease, and solids and liquids were separated using a decanter. Liquid hydrolysates derived from this process had >90% reduction in aflatoxin when clay was present. ACE-inhibitory activities of these hydrolysates suggest a potential benefit for blood pressure regulation. The insoluble fractions from the dispersions were dried and used in a separate turkey poult feeding study. These results indicate that scale-up of this novel process is feasible and offers a means for adding value to this underutilized protein source.
    LWT - Food Science and Technology. 05/2013; 51(2):492–499.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the protein composition and potential allergenicity of peanut testae or skins, proteome analysis was conducted using nanoLC-MS/MS sequencing. Initial amino acid analysis suggested differences in protein compositions between the blanched seed (skins removed) and skin. Phenolic compounds hindered analysis of proteins in skins when the conventional extraction method was used; therefore, phenol extraction of proteins was necessary. A total of 123 proteins were identified in blanched seed and skins, and 83 of the proteins were common between the two structures. The skins contained all of the known peanut allergens in addition to 38 proteins not identified in the seed. Multiple defense proteins with antifungal activity were identified in the skins. Western blotting using sera from peanut allergic patients revealed that proteins extracted from both the blanched seed and skin bound significant levels of IgE. However, when phenolic compounds were present in the skin protein extract, no IgE binding was observed. These findings indicate that peanut skins contain potentially allergenic proteins; however, the presence of phenolic compounds may attenuate this effect.
    Journal of Agricultural and Food Chemistry 03/2013; · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peanut meal, the primary by-product of commercial oil crushing operations, is an excellent source of protein although aflatoxin contamination often limits applications for this material. Naturally aflatoxin-contaminated (59 ppb) peanut meal dispersions were adjusted to pH 2.1 or pH 9.1, with or without additional protease and/or a clay absorbent, and the resulting soluble extracts derived from these dispersions were spray dried. Clay addition during processing minimally affected spray-drying yields, protein powder solubility or antioxidant capacities, whereas these properties were significantly altered by pH and protease treatments. Spray-dried hydrolysates produced from peanut meal treated with clay contained significantly less aflatoxin than hydrolysates produced without clay; the effects of pH or enzyme on aflatoxin content were minimal. Peanut meal treated with Alcalase, and clay yielded spray-dried hydrolysates with enhanced antioxidant capacity and increased solubility compared to unhydrolysed controls and had aflatoxin levels below 1 ppb.
    International Journal of Food Science & Technology 01/2013; 48(1). · 1.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT:   Peanuts in North America and Europe are primarily consumed after dry roasting. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be attained using different roast temperature/time combinations, which could affect product quality. To investigate this potential, runner peanuts from a single lot were systematically roasted using 5 roast temperatures (147, 157, 167, 177, and 187 °C) and to Hunter L-values of 53 ± 1, 48.5 ± 1, and 43 ± 1, corresponding to light, medium, and dark roasts, respectively. Moisture contents (MC) ranged from 0.41% to 1.70% after roasting. At equivalent roast temperatures, MC decreased as peanuts became darker; however, for a given color, MC decreased with decreasing roast temperature due to longer roast times required for specified color formation. Initial total tocopherol contents of expressed oils ranged from 164 to 559 μg/g oil. Peanuts roasted at lower temperatures and darker colors had higher tocopherol contents. Glucose content was roast color and temperature dependent, while fructose was only temperature dependent. Soluble protein was lower at darker roast colors, and when averaged across temperatures, was highest when samples were roasted at 187 °C. Lysine content decreased with increasing roast color but was not dependent on temperature. MC strongly correlated with several components including tocopherols (R(2) = 0.67), soluble protein (R(2) = 0.80), and peak force upon compression (R(2) = 0.64). The variation in characteristics related to roast conditions is sufficient to suggest influences on final product shelf life and consumer acceptability. Practical Application:  Peanuts are typically dry roasted to a specified surface color for a given food application; however, it is possible to obtain equivalent colors using different temperatures. This simple observation led to the overall goal of this research which was to determine if peanuts roasted to equivalent surface colors using different temperatures are equivalent from a quality perspective. Several compositional and textural measurements important to product quality differed based on the temperature used to achieve a given roast color. Overall, this study suggests there is good potential to optimize peanut quality by simply adjusting the time/temperature profiles during roasting.
    Journal of Food Science 11/2012; · 1.78 Impact Factor
  • Chellani S Hathorn, Timothy H Sanders
    [Show abstract] [Hide abstract]
    ABSTRACT:   Peanut skins (PS) are a good source of phenolic compounds. This study evaluated antioxidant properties and flavor of peanut paste and peanut butter enhanced with peanut skins. PS were added to both materials in concentrations of 0.0%, 0.5%, 1.0%, 5.0%, 10.0%, 15.0%, and 20.0% (w/w). PS, peanut paste, and peanut butter used in the study had initial total phenolics contents of 158, 12.9, and 14.1 mg GAE/g, respectively. Hydrophilic oxygen radical absorbance capacity (H-ORAC) of peanut skins was 189453 μMol Trolox/100 g and addition of 5% PS increased H-ORAC of peanut paste and peanut butter by 52% to 63%. Descriptive sensory analysis indicated that the addition of 1% PS did not change intensity of descriptors in the sensory profile of either peanut paste or peanut butter. Addition of 5% PS resulted in significant differences in woody, hulls, skins; bitter; and astringent descriptors and 10% PS addition resulted in significant differences in most attributes toward more negative flavor. Practical Application:  Peanut skins are a low-value residue material from peanut processing which contain naturally occurring phenolic compounds. The use of this material to improve antioxidant capacity and shelf-life of foods can add value to the material and improve the nutritional value of foods. The improved nutritional qualities and unchanged flavor profile occurring with low levels of peanuts skins in peanut paste and peanut butter suggest potential application of this technology in various food industries.
    Journal of Food Science 10/2012; · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To explore a potential use for peanut skins as a functional food ingredient, milled skins were extracted with 70% ethanol and filtered to remove insoluble material; the soluble extract was spray-dried with or without the addition of maltodextrin. Peanut skin extracts had high levels of procyanidin oligomers (DP2-DP4) but low levels of monomeric flavan-3-ols and polymers. The addition of maltodextrin during spray-drying resulted in the formation of unknown polymeric compounds. Spray-drying also increased the proportion of flavan-3-ols and DP2 procyanidins in the extracts while decreasing larger procyanidins. Spray-dried powders had higher antioxidant capacity and total phenolics and increased solubility compared to milled skins. These data suggest that spray-dried peanut skin extracts may be a good source of natural antioxidants. Additionally, the insoluble material produced during the process may have increased value for use in animal feed due to enrichment of protein and removal of phenolic compounds during extraction.
    Journal of Agricultural and Food Chemistry 10/2012; · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Value-added applications are needed for peanut meal, which is the high-protein by-product of commercial peanut oil production. Peanut meal dispersions were hydrolyzed with alcalase, flavourzyme and pepsin in an effort to improve functional and nutritional properties of the resulting water soluble extracts. Degree of hydrolysis (DH) ranged from 20 to 60% for alcalase, 10 to 20% for pepsin and 10 to 70% for flavourzyme from 3 to 240 min. Low molecular weight peptides (<14 kDa) and unique banding patterns reflected the different proteolytic activities of each enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Total soluble solids and soluble nitrogen increased a minimum of 30 and 110%, respectively, for all hydrolysates after 4-h hydrolysis. Differences in air/water adsorption responses of hydrolysates were a function of protease specificity. Antioxidant capacities of all hydrolysates were greater than unhydrolyzed controls and correlated linearly (R2 = 0.87) with DH, whereas antioxidant capacities of hydrolysates were minimally dependent on bicinchoninic acid protein solubility or relative amino acid distribution. PRACTICAL APPLICATIONSPeanut meal is the high-protein by-product of commercial peanut oil production. While an excellent source of protein, aflatoxin contamination currently limits applications of peanut meal to feed markets. Recently described efforts to sequester aflatoxin from peanut meal during processing have proven successful, potentially allowing for processing of this material into value-added components including aflatoxin-free protein/peptide concentrates. Accordingly, the current manuscript focuses on the potential for enzymatic hydrolysis (three different proteases are compared) to improve functional and nutritional properties of peanut meal during processing. Enzymatic hydrolysis substantially increases solubility and antioxidant capacities of peanut meal hydrolysates. A potential mechanism for increased antioxidant capacity with increasing hydrolysis is discussed. These and other chemical/functional data within the manuscript directly apply to strategies for value-added processing of peanut meal.
    Journal of Food Biochemistry 10/2012; 36(5). · 0.76 Impact Factor
  • 09/2011;
  • Source
    Lisa L. Dean, Jack P. Davis, Timothy H. Sanders
    03/2011: pages 225 - 242; , ISBN: 9781444339925
  • Journal of Agricultural and Food Chemistry 03/2011; · 3.11 Impact Factor
  • Source
    E. R. Neta, T. Sanders, M. A. Drake
    07/2010: pages 985 - 1022; , ISBN: 9780470622834
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human clinical trials have demonstrated the cardiovascular protective properties of peanuts and peanut oil in decreasing total and low density lipoprotein cholesterol (LDL-C) without reducing high density lipoprotein cholesterol (HDL-C). The cardiovascular effects of the nonlipid portion of peanuts has not been evaluated even though that fraction contains arginine, flavonoids, folates, and other compounds that have been linked to cardiovascular health. The objective of this study was to evaluate the effects of fat free peanut flour (FFPF), peanuts, and peanut oil on cardiovascular disease (CVD) risk factors and the development of atherosclerosis in male Syrian golden hamsters. Each experimental diet group was fed a high fat, high cholesterol diet with various peanut components (FFPF, peanut oil, or peanuts) substituted for similar metabolic components in the control diet. Tissues were collected at week 0, 12, 18, and 24. Total plasma cholesterol (TPC), LDL-C, and HDL-C distributions were determined by high-performance gel filtration chromatography, while aortic total cholesterol (TC) and cholesteryl ester (CE) were determined by gas liquid chromatography. Peanuts, peanut oil, and FFPF diet groups had significantly (P < 0.05) lower TPC, non-HDL-C than the control group beginning at about 12 wk and continuing through the 24-wk study. HDL-C was not significantly different among the diet groups. Peanut and peanut component diets retarded an increase in TC and CE. Because CE is an indicator of the development of atherosclerosis this study demonstrated that peanuts, peanut oil, and FFPF retarded the development of atherosclerosis in animals consuming an atherosclerosis inducing diet.
    Journal of Food Science 05/2010; 75(4):H116-22. · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The efficacy of a bentonite clay, Astra-Ben 20A (AB20A), to sequester aflatoxin from contaminated (approximately 110 ppb) peanut meal during protein extraction was studied. Aqueous peanut meal dispersions (10% w/w) were prepared by varying the pH, temperature, enzymatic hydrolysis conditions, and concentrations of AB20A. After extraction, dispersions were centrifuged and filtered to separate both the water-soluble and the water-insoluble fractions for subsequent testing. Inclusion of AB20A at 0.2 and 2% reduced (p < 0.05) aflatoxin concentrations below 20 ppb in both fractions; however, the higher concentration of AB20A also reduced (p < 0.05) the water-soluble protein content. Inclusion of 0.2% AB20A did not affect protein solubility, total soluble solids, or degree of hydrolysis. Peanut meal adsorption isotherms measured the AB20A capacity to sequester aflatoxin. These results are discussed in the context of a process designed to sequester aflatoxin from contaminated peanut meal, which could enable derivatives of this high protein material to be utilized in enhanced feed and/or food applications.
    Journal of Agricultural and Food Chemistry 03/2010; 58(9):5625-32. · 3.11 Impact Factor
  • Source
    J.P. Davis, L.L. Dean, K.M. Price, T.H. Sanders
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrophilic and lipophilic oxygen radical antioxidant capacity (H&L-ORAC) of peanut flours, blanched peanut seed, and peanut skins were characterised across a range of roast intensities. H-ORAC ranged from 5910 to 7990, 3040 to 3700 and 152,290 to 209,710 μmoles Trolox/100 g for the flours, seed, and skins, respectively. H-ORAC increased linearly with darker seed colour after roasting at 166 °C from 0 to 77 min, whereas skin H-ORAC peaked after roasting for 7 min. Linear correlations with H-ORAC and total phenolic content were observed. Additionally, completely defatted peanut seed were solubilised (5% w/w) in water and H-ORAC measured. For these samples, H-ORAC decreased with roast intensity which correlated with soluble protein. L-ORAC ranged from 620 to 1120, 150 to 730 and 2150 to 6320 μmoles Trolox/100 g for peanut flours, seed, and skins, respectively. L-ORAC increased linearly with both darker seed colour and skin colour across the 77 min range. L-ORACs of roasted peanuts and ingredients are discussed in terms of tocopherol contents and Maillard reaction products.
    Food Chemistry. 01/2010;
  • Source
    Lisa L. Dean, Timothy H. Sanders
    [Show abstract] [Hide abstract]
    ABSTRACT: The fatty acid composition of peanut seed oil from a range of samples included in the core of the core or the ‘mini core’ of the US peanut germplasm collection was determined using gas chromatography. Oil contents of the seeds ranged from 31.4 to 47.9%. Very long-chain fatty acids are defined as those having more than 22 carbons in chain length. Although it has been reported in peanuts seed previously, the presence of hexacosanoic acid (C26:0) was quantified in a large variety of samples here for the first time along with docosanoic (C22:0) and tetracosanoic acids (C24:0) to demonstrate the potential of peanut seed as a source of very long-chain fatty acids that have been associated with widely varying effects such as the metabolism of the dietary fatty acids and physical properties of the oils themselves. Use of representative samples from the peanut germplasm collection allowed for comparison of very long-chain fatty acid content among seeds of different origins, and showed, although values overlapped, the seeds did cluster according to area of origin.
    Plant Genetic Resources 12/2009; 7(03). · 0.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biodiesels were prepared according to standard procedures from unrefined oils of eight commercially available peanut cultivars and compared for differences in physical properties important to fuel performance. Dynamic viscosity, kinematic viscosity and density were measured from 100 to 15 °C, and differences (p < 0.05) in these physical properties occurred more frequently at lower temperatures when comparing the different cultivars. Unlike data for the oil feedstocks, no meaningful correlations among biodiesel fatty acid profiles and either fuel viscosity or density were observed. Low temperature crystallization of the peanut biodiesels was measured via differential scanning calorimetry. Increased concentrations of long chain saturated fatty acid methyl esters (FAME) were associated with an increased propensity for low temperature crystallization, and the single FAME category most associated with low temperature crystallization was C:24. Tempering at 10 °C followed by analysis of the soluble fractions (winterization), improved crystallization properties and confirmed the importance that long chain saturated FAMEs play in the final functionality of peanut biodiesel. Peanut data is also compared to data for canola and soy biodiesels, as these feedstocks are more common worldwide for biodiesel production. Overall, this work suggests that minimizing the concentration of long chain saturated FAMEs within peanut biodiesel, either through processing and/or breeding efforts would improve the low temperature performance of peanut biodiesel.
    Journal of Oil & Fat Industries 01/2009; · 1.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The usefulness of core collections of germplasm collections has been well established. The U.S. germplasm collection for peanuts was selectively reduced based on morphological characteristics to a mini core or “Core of the Core” collection composed of 112 of the 7432 accessions in the whole collection to make it more efficient for study. Of these samples, 108 were available from one location in the same year and were therefore exposed to one set of environmental conditions wherein genetic variability could also be examined. These samples were analyzed for total and individual amino acid content, fatty acid content, tocopherols, and folic acid content. These data provide a starting point for establishing nutrient composition within these accessions and provide an early indication of currently important characteristics in these lines which might be suited for use in random breeding initiatives.

Publication Stats

975 Citations
118.18 Total Impact Points


  • 1992–2014
    • North Carolina State University
      • Department of Food, Bioprocessing and Nutrition Science
      Raleigh, North Carolina, United States
  • 1989–2010
    • United States Department of Agriculture
      • Agricultural Research Service (ARS)
      Washington, D. C., DC, United States
  • 1998
    • Southern Regional Medical Center
      Georgia, United States
  • 1984
    • University of Georgia
      • Department of Plant Pathology
      Athens, GA, United States