Geoffrey B Fincher

University of Adelaide, Tarndarnya, South Australia, Australia

Are you Geoffrey B Fincher?

Claim your profile

Publications (207)915.65 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to increase cellulose content and improve the stem strength of cereals could have beneficial applications in stem lodging and producing crops with higher cellulose content for biofuel feedstocks. Here, such potential is explored in the commercially important crop barley through the manipulation of cellulose synthase genes (CesA). Barley plants transformed with primary cell wall (PCW) and secondary cell wall (SCW) barley cellulose synthase (HvCesA) cDNAs driven by the CaMV 35S promoter, were analysed for growth and morphology, transcript levels, cellulose content, stem strength, tissue morphology and crystalline cellulose distribution. Transcript levels of the PCW HvCesA transgenes were much lower than expected and silencing of both the endogenous CesA genes and introduced transgenes was often observed. These plants showed no aberrant phenotypes. Although attempts to over-express the SCW HvCesA genes also resulted in silencing of the transgenes and endogenous SCW HvCesA genes, aberrant phenotypes were sometimes observed. These included brittle nodes and, with the 35S:HvCesA4 construct, a more severe dwarfing phenotype, where xylem cells were irregular in shape and partially collapsed. Reductions in cellulose content were also observed in the dwarf plants and transmission electron microscopy showed a significant decrease in cell wall thickness. However, there were no increases in overall crystalline cellulose content or stem strength in the CesA over-expression transgenic plants, despite the use of a powerful constitutive promoter. The results indicate that the cellulose biosynthetic pathway is tightly regulated, that individual CesA proteins may play different roles in the synthase complex, and that the sensitivity to CesA gene manipulation observed here suggests that in planta engineering of cellulose levels is likely to require more sophisticated strategies.
    BMC Plant Biology 12/2015; 15(1). DOI:10.1186/s12870-015-0448-y · 3.94 Impact Factor
  • PLoS ONE 08/2015; 10(8):e0135382. DOI:10.1371/journal.pone.0135382 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell 07/2015; 162(3):527-539. DOI:10.1016/j.cell.2015.07.002 · 33.12 Impact Factor
  • Source
    PLoS ONE 07/2015; 10(7). DOI:10.1371/journal.pone.0132787 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the genes that contribute to cellulose content in cereal culms and to a greater understanding of the interactions between them.
    PLoS ONE 07/2015; 10(7). DOI:10.1371/journal.pone.0130890 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global grape production could generate up to 13Mt/yr of wasted biomass. The compositions of Cabernet Sauvignon (red marc) and Sauvignon Blanc (white marc) were analyzed with a view to using marc as raw material for biofuel production. On a dry weight basis, 31-54% w/w of the grape marc consisted of carbohydrate, of which 47-80% was soluble in aqueous media. Ethanol insoluble residues consisted mainly of polyphenols, pectic polysaccharides, heteroxylans and cellulose. Acid and thermal pre-treatments were investigated for their effects on subsequent cellulose saccharification. A 0.5M sulfuric acid pre-treatment yielded a 10% increase in the amount of liberated glucose after enzymatic saccharification. The theoretical amount of bioethanol that could be produced by fermentation of grape marc was up to 400L/t. However, bioethanol from only soluble carbohydrates could yield 270L/t, leaving a polyphenol enriched fraction that may be used in animal feed or as fertilizer. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
    Bioresource Technology 06/2015; 193:76-83. DOI:10.1016/j.biortech.2015.06.030 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phylogenetic analyses of cellulose synthase (CesA) and cellulose synthase-like (Csl) families from the cellulose synthase gene superfamily were used to reconstruct their evolutionary origins and selection histories. Counterintuitively, genes encoding primary cell wall CesAs have undergone extensive expansion and diversification following an ancestral duplication from a secondary cell wall-associated CesA. Selection pressure across entire CesA and Csl clades appears to be low, but this conceals considerable variation within individual clades. Genes in the CslF clade are of particular interest because some mediate the synthesis of (1,3;1,4)-β-glucan, a polysaccharide characteristic of the evolutionarily successful grasses that is not widely distributed elsewhere in the plant kingdom. The phylogeny suggests that duplication of either CslF6 and/or CslF7 produced the ancestor of a highly conserved cluster of CslF genes that remain located in syntenic regions of all grass genomes examined. A CslF6-specific insert encoding approximately 55 amino acid residues has subsequently been incorporated into the gene, or possibly lost from other CslFs, and the CslF7 clade has undergone a significant long term shift in selection pressure. Homology modeling and molecular dynamics of the CslF6 protein were used to define the three-dimensional dispositions of individual amino acids that are subject to strong ongoing selection, together with the position of the conserved 55 amino acid insert that is known to influence the amounts and fine structures of (1,3;1,4)-β-glucans synthesized. These wall polysaccharides are attracting renewed interest because of their central roles as sources of dietary fibre in human health and for generation of renewable liquid biofuels. Copyright © 2015, Plant Physiology.
    Plant physiology 05/2015; 168(3). DOI:10.1104/pp.15.00140 · 7.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate how a moderate increase in dietary meat content combined (or not) with soluble fibre would influence protein digestion as well as digesta characteristics and flow. Four groups of pigs were fed Western-style diets (high-protein/high-fat) containing two types of barbecued red meat, one with and one without a wheat arabinoxylan-rich fraction. After 4 wk, digesta samples were collected from small and large intestinal sites and analyzed for protein, amino acids, dry matter, and acid-insoluble ash. Tissue samples were also collected from each site. Arabinoxylan consumption led to somewhat lower apparent protein digestibility within the small and large intestines as well as shorter mean retention times. This suggests that the lowered protein digestibility is due, at least partly, to shorter access time to digestive proteases and absorptive surfaces. Additionally, digesta mass was higher in pigs fed arabinoxylan while dry matter (%) was lower, indicating an increased digesta water-holding capacity due to the presence of a soluble dietary fiber. Data showed that solubilized wheat arabinoxylan provides potential health benefits through decreased protein digestibility, increased digesta mass, and reduced mean retention time, even for diets with a moderately higher protein content. These factors are associated with efficiency of digestion and satiety, both of which have implications for prevention of obesity and other health disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
    Nutrition 04/2015; 31(9). DOI:10.1016/j.nut.2015.03.006 · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterodera avenae (cereal cyst nematode, CCN) infects the roots of barley (Hordeum vulgare) forming syncytial feeding sites. In resistant host plants, relatively few females develop to maturity. Little is known about the physiological and biochemical changes induced during CCN infection. Responses to CCN infection were investigated in resistant (Rha2) and susceptible barley cultivars through histological, compositional and transcriptional analysis. Two phases were identified that influence CCN viability, including feeding site establishment and subsequent cyst maturation. Syncytial development progressed faster in the resistant cultivar Chebec than in the susceptible cultivar Skiff, and was accompanied by changes in cell wall polysaccharide abundance, particularly (1,3;1,4)-β-glucan. Transcriptional profiling identified several glycosyl transferase genes, including CELLULOSE SYNTHASE-LIKE F10 (HvCslF10), which may contribute to differences in polysaccharide abundance between resistant and susceptible cultivars. In barley, Rha2-mediated CCN resistance drives rapid deterioration of CCN feeding sites, specific changes in cell wall-related transcript abundance and changes in cell wall composition. During H. avenae infection, (1,3;1,4)-β-glucan may influence CCN feeding site development by limiting solute flow, similar to (1,3)-β-glucan during dicot cyst nematode infections. Dynamic transcriptional changes in uncharacterized HvCslF genes, possibly involved in (1,3;1,4)-β-glucan synthesis, suggest a role for these genes in the CCN infection process. © 2015 The University of Adelaide. New Phytologist © 2015 New Phytologist Trust.
    New Phytologist 03/2015; 207(1). DOI:10.1111/nph.13349 · 7.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In cereals, the presence of soluble polysaccharides including (1,3;1,4)-β-glucan has downstream implications for human health, animal feed and biofuel applications. Sorghum bicolor (L.)Moench is a versatile crop, but there are limited reports regarding the content of such soluble polysaccharides. Here, the amount of (1,3;1,4)-β-glucan present in sorghum tissues was measured using a Megazyme assay. Very low amounts were present in the grain, ranging from 0.16%-0.27% (w/w), while there was a greater quantity in vegetative tissues at 0.12-1.71% (w/w). The fine structure of (1,3;1,4)-β-glucan, as denoted by the ratio of cellotriosyl and cellotetraosyl residues, was assessed by HPLC and ranged from 2.6-3:1 in the grain, whilst ratios in vegetative tissues were lower at 2.1-2.6:1. The distribution of (1,3;1,4)-β-glucan was examined using a specific antibody and observed with fluorescence and transmission electron microscopy. Micrographs showed a variable distribution of (1,3;1,4)-β-glucan influenced by temporal and spatial factors. The sorghum orthologues of genes implicated in the synthesis of (1,3;1,4)-β-glucan in other cereals, such as the Cellulose synthase-like (Csl) F and H gene families were defined. Transcript profiling of these genes across sorghum tissues was carried out using real-time quantitative PCR, indicating that, as in other cereals, CslF6 transcripts dominated. This article is protected by copyright. All rights reserved.
    Journal of Integrative Plant Biology 02/2015; 57(4). DOI:10.1111/jipb.12338 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cellulose synthase-like gene HvCslF6, which is essential for (1,3;1,4)-β-glucan biosynthesis in barley, collocates with quantitative trait loci (QTL) for grain (1,3;1,4)-β-glucan concentration in several populations, including CDC Bold × TR251. Here, an alanine-to-threonine substitution (caused by the only non-synonymous difference between the CDC Bold and TR251 HvCslF6 alleles) was mapped to a position within HvCSLF6 that seems unlikely to affect enzyme stability or function. Consistent with this, transient expression of full-length HvCslF6 cDNAs from CDC Bold and TR251 in Nicotianabenthamiana led to accumulation of similar amounts of (1,3;1,4)-β-glucan accumulation. Monitoring of HvCslF6 transcripts throughout grain development revealed a significant difference late in grain development (more than 30 days after pollination), with TR251 [the parent with higher grain (1,3;1,4)-β-glucan] exhibiting higher transcript levels than CDC Bold. A similar difference was observed between Beka and Logan, the parents of another population in which a QTL had been mapped in the HvCslF6 region. Sequencing of a putative promoter region of HvCslF6 revealed numerous polymorphisms between CDC Bold and TR251, but none between Beka and Logan. While the results of this work indicate that naturally occurring quantitative differences in (1,3;1,4)-β-glucan accumulation may be due to cis-regulated differences in HvCslF6 expression, these could not be attributed to any specific DNA sequence polymorphism. Nevertheless, information on HvCslF6 sequence polymorphism was used to develop molecular markers that could be used in barley breeding to select for the desired [low or high (1,3;1,4)-β-glucan] allele of the QTL. Electronic supplementary material The online version of this article (doi:10.1007/s11032-015-0208-6) contains supplementary material, which is available to authorized users.
    Molecular Breeding 01/2015; 35(1-1):1-12. DOI:10.1007/s11032-015-0208-6 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (1,3;1,4)-β-Glucan is an important component of the cell walls of barley grain as it affects processability during the production of alcoholic beverages and has significant human health benefits when consumed above recommended threshold levels. This leads to diametrically opposed quality requirements for different applications as low levels of (1,3;1,4)-β-glucan are required for brewing and distilling and high levels for positive impacts on human health. We quantified grain (1,3;1,4)-β-glucan content in a collection of 399 2-row Spring-type, and 204 2-row Winter-type elite barley cultivars originating mainly from north western Europe. We combined these data with genotypic information derived using a 9 K Illumina iSelect SNP platform and subsequently carried out a Genome Wide Association Scan (GWAS). Statistical analysis accounting for residual genetic structure within the germplasm collection allowed us to identify significant associations between molecular markers and the phenotypic data. By anchoring the regions that contain these associations to the barley genome assembly we catalogued genes underlying the associations. Based on gene annotations and transcript abundance data we identified candidate genes. We show that a region of the genome on chromosome 2 containing a cluster of CELLULOSE SYNTHASE-LIKE (Csl) genes, including CslF3, CslF4, CslF8, CslF10, CslF12 and CslH, as well as a region on chromosome 1H containing CslF9, are associated with the phenotype in this germplasm. We also observed that several regions identified by GWAS contain glycoside hydrolases that are possibly involved in (1,3;1,4)-β-glucan breakdown, together with other genes that might participate in (1,3;1,4)-β-glucan synthesis, re-modelling or regulation. This analysis provides new opportunities for understanding the genes related to the regulation of (1,3;1,4)-β-glucan content in cereal grains.
    BMC Genomics 10/2014; 15(1):907. DOI:10.1186/1471-2164-15-907 · 4.04 Impact Factor
  • Source
    Rachel A Burton · Geoffrey B Fincher
    [Show abstract] [Hide abstract]
    ABSTRACT: The composition of cell walls in cereal grains and other grass species differs markedly from walls in seeds of other plants. In the maternal tissues that surround the embryo and endosperm of the grain, walls contain higher levels of cellulose and in many cases are heavily lignified. In walls of the endosperm, heteroxylans and (1,3;1,4)-β-glucans are the major non-cellulosic components, with lower levels of glucomannans and pectic polysaccharides. The amount of cellulose is relatively low, and the endosperm walls are generally not lignified. The low cellulose and lignin contents are possible because the walls of the endosperm perform no load-bearing function in the mature grain and indeed the low levels of these relatively intractable wall components are necessary because they allow rapid degradation of the walls following germination of the grain. The ‘core’ non-cellulosic wall polysaccharides in grain of the cereals and other grasses are the heteroxylans and, more specifically, arabinoxylans. The (1,3;1,4)-β-glucans appear in the endosperm of some grass species but are essentially absent from others; they may constitute from zero to more than 45% of the cell walls of the endosperm, depending on the species. It is clear that in some cases these (1,3;1,4)-β-glucans function as a major store of metabolizable glucose in the grain. Cereal grains and their constituent cell wall polysaccharides are centrally important as a source of dietary fibre in human societies and breeders have started to select for high levels of non-cellulosic wall polysaccharides in grain. To meet end-user requirements, it is important that we understand cell wall biology in the grain both during development and following germination.
    Frontiers in Plant Science 09/2014; 5:456. DOI:10.3389/fpls.2014.00456 · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In plants, cell walls are one of the first lines of defence for protecting cells from successful invasion by fungal pathogens and are a major factor in basal host resistance. For the plant cell to block penetration attempts, it must adapt its cell wall to withstand the physical and chemical forces applied by the fungus.Papillae that have been effective in preventing penetration by pathogens are traditionally believed to contain callose as the main polysaccharide component. Here, we have re-examined the composition of papillae of barley (Hordeum vulgare) attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) using a range of antibodies and carbohydrate-binding modules that are targeted to cell wall polysaccharides.The data show that barley papillae induced during infection with Bgh contain, in addition to callose, significant concentrations of cellulose and arabinoxylan. Higher concentrations of callose, arabinoxylan and cellulose are found in effective papillae, compared with ineffective papillae. The papillae have a layered structure, with the inner core consisting of callose and arabinoxylan and the outer layer containing arabinoxylan and cellulose.The association of arabinoxylan and cellulose with penetration resistance suggests new targets for the improvement of papilla composition and enhanced disease resistance.
    New Phytologist 08/2014; 204(3). DOI:10.1111/nph.12974 · 7.67 Impact Factor
  • Rachel A Burton · Geoffrey B Fincher
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production.
    Current Opinion in Biotechnology 04/2014; 26C:79-84. DOI:10.1016/j.copbio.2013.10.007 · 8.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β- glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls.
    PLoS ONE 03/2014; 9(3):e90888. DOI:10.1371/journal.pone.0090888 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The elongating maize internode represents a useful system for following development of cell walls in vegetative cells in the Poaceae family. Elongating internodes can be divided into four developmental zones, namely the basal intercalary meristem, above which are found the elongation, transition and maturation zones. Cells in the basal meristem and elongation zones contain mainly primary walls, while secondary cell wall deposition accelerates in the transition zone and predominates in the maturation zone. The major wall components cellulose, lignin and glucuronoarabinoxylan (GAX) increased without any abrupt changes across the elongation, transition and maturation zones, although GAX appeared to increase more between the elongation and transition zones. Microarray analyses show that transcript abundance of key glycosyl transferase genes known to be involved in wall synthesis or re-modelling did not match the increases in cellulose, GAX and lignin. Rather, transcript levels of many of these genes were low in the meristematic and elongation zones, quickly increased to maximal levels in the transition zone and lower sections of the maturation zone, and generally decreased in the upper maturation zone sections. Genes with transcript profiles showing this pattern included secondary cell wall CesA genes, GT43 genes, some beta-expansins, UDP-Xylose synthase and UDP-Glucose pyrophosphorylase, some xyloglucan endotransglycosylases/hydrolases, genes involved in monolignol biosynthesis, and NAM and MYB transcription factor genes. The data indicated that the enzymic products of genes involved in cell wall synthesis and modification remain active right along the maturation zone of elongating maize internodes, despite the fact that corresponding transcript levels peak earlier, near or in the transition zone.
    BMC Plant Biology 01/2014; 14(1):27. DOI:10.1186/1471-2229-14-27 · 3.94 Impact Factor
  • 12/2013; DOI:10.1094/CPLEX-2013-1226-21W
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To explain the low levels of starch, high levels of (1,3;1,4)-β-glucan, and thick cell walls in grains of Brachypodium distachyon L. relative to those in other Pooideae, aspects of grain development were compared between B. distachyon and barley (Hordeum vulgare L.). Cell proliferation, cell expansion, and endoreduplication were reduced in B. distachyon relative to barley and, consistent with these changes, transcriptional downregulation of the cell-cycle genes CDKB1 and cyclin A3 was observed. Similarly, reduced transcription of starch synthase I and starch-branching enzyme I was observed as well as reduced activity of starch synthase and ADP-glucose pyrophosphorylase, which are consistent with the lowered starch content in B. distachyon grains. No change was detected in transcription of the major gene involved in (1,3;1,4)-β-glucan synthesis, cellulose synthase-like F6. These results suggest that, while low starch content results from a reduced capacity for starch synthesis, the unusually thick cell walls in B. distachyon endosperm probably result from continuing (1,3;1,4)-β-glucan deposition in endosperm cells that fail to expand. This raises the possibility that endosperm expansion is linked to starch deposition.
    Journal of Experimental Botany 09/2013; 64. DOI:10.1093/jxb/ert292 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Endo-(1,4)-β-glucanase (cellulase) glycosyl hydrolase GH9 enzymes have been implicated in several aspects of cell wall metabolism in higher plants, including cellulose biosynthesis and degradation, modification of other wall polysaccharides that contain contiguous (1,4)-β-glucosyl residues, and wall loosening during cell elongation. Results The endo-(1,4)-β-glucanase gene families from barley (Hordeum vulgare), maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa) and Brachypodium (Brachypodium distachyon) range in size from 23 to 29 members. Phylogenetic analyses show variations in clade structure between the grasses and Arabidopsis, and indicate differential gene loss and gain during evolution. Map positions and comparative studies of gene structures allow orthologous genes in the five species to be identified and synteny between the grasses is found to be high. It is also possible to differentiate between homoeologues resulting from ancient polyploidizations of the maize genome. Transcript analyses using microarray, massively parallel signature sequencing and quantitative PCR data for barley, rice and maize indicate that certain members of the endo-(1,4)-β-glucanase gene family are transcribed across a wide range of tissues, while others are specifically transcribed in particular tissues. There are strong correlations between transcript levels of several members of the endo-(1,4)-β-glucanase family and the data suggest that evolutionary conservation of transcription exists between orthologues across the grass family. There are also strong correlations between certain members of the endo-(1,4)-β-glucanase family and other genes known to be involved in cell wall loosening and cell expansion, such as expansins and xyloglucan endotransglycosylases. Conclusions The identification of these groups of genes will now allow us to test hypotheses regarding their functions and joint participation in wall synthesis, re-modelling and degradation, together with their potential role in lignocellulose conversion during biofuel production from grasses and cereal crop residues.
    BMC Plant Biology 12/2012; 12(1):235. DOI:10.1186/1471-2229-12-235 · 3.94 Impact Factor

Publication Stats

7k Citations
915.65 Total Impact Points

Institutions

  • 1994–2015
    • University of Adelaide
      • • ARC Centre of Excellence in Plant Cell Walls
      • • School of Agriculture, Food and Wine
      • • Australian Centre for Plant Functional Genomics
      Tarndarnya, South Australia, Australia
  • 2013
    • National Institute of Agricultural Botany
      Cambridge, England, United Kingdom
  • 2012
    • The Commonwealth Scientific and Industrial Research Organisation
      Canberra, Australian Capital Territory, Australia
  • 1974–2012
    • University of Melbourne
      • School of Botany
      Melbourne, Victoria, Australia
  • 2011
    • Washington State University
      Pullman, Washington, United States
  • 2010
    • Australian Centre for Plant Functional Genomics (ACPFG)
      Tarndarnya, South Australia, Australia
  • 2009
    • California State University, Long Beach
      • Department of Biological Sciences
      Long Beach, CA, United States
    • French National Centre for Scientific Research
      • Centre de Recherches sur les Macromolécules Végétales
      Lutetia Parisorum, Île-de-France, France
  • 2002
    • John Innes Centre
      Norwich, England, United Kingdom
  • 1982–1995
    • La Trobe University
      • Department of Biochemistry
      Melbourne, Victoria, Australia
  • 1986–1993
    • University of Vic
      Vic, Catalonia, Spain
  • 1984
    • Washington University in St. Louis
      • Department of Biology
      Saint Louis, MO, United States