Geoffrey B Fincher

University of Adelaide, Tarndarnya, South Australia, Australia

Are you Geoffrey B Fincher?

Claim your profile

Publications (196)847.77 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to increase cellulose content and improve the stem strength of cereals could have beneficial applications in stem lodging and producing crops with higher cellulose content for biofuel feedstocks. Here, such potential is explored in the commercially important crop barley through the manipulation of cellulose synthase genes (CesA). Barley plants transformed with primary cell wall (PCW) and secondary cell wall (SCW) barley cellulose synthase (HvCesA) cDNAs driven by the CaMV 35S promoter, were analysed for growth and morphology, transcript levels, cellulose content, stem strength, tissue morphology and crystalline cellulose distribution. Transcript levels of the PCW HvCesA transgenes were much lower than expected and silencing of both the endogenous CesA genes and introduced transgenes was often observed. These plants showed no aberrant phenotypes. Although attempts to over-express the SCW HvCesA genes also resulted in silencing of the transgenes and endogenous SCW HvCesA genes, aberrant phenotypes were sometimes observed. These included brittle nodes and, with the 35S:HvCesA4 construct, a more severe dwarfing phenotype, where xylem cells were irregular in shape and partially collapsed. Reductions in cellulose content were also observed in the dwarf plants and transmission electron microscopy showed a significant decrease in cell wall thickness. However, there were no increases in overall crystalline cellulose content or stem strength in the CesA over-expression transgenic plants, despite the use of a powerful constitutive promoter. The results indicate that the cellulose biosynthetic pathway is tightly regulated, that individual CesA proteins may play different roles in the synthase complex, and that the sensitivity to CesA gene manipulation observed here suggests that in planta engineering of cellulose levels is likely to require more sophisticated strategies.
    BMC Plant Biology 12/2015; 15(1). DOI:10.1186/s12870-015-0448-y · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterodera avenae (cereal cyst nematode, CCN) infects the roots of barley (Hordeum vulgare) forming syncytial feeding sites. In resistant host plants, relatively few females develop to maturity. Little is known about the physiological and biochemical changes induced during CCN infection. Responses to CCN infection were investigated in resistant (Rha2) and susceptible barley cultivars through histological, compositional and transcriptional analysis. Two phases were identified that influence CCN viability, including feeding site establishment and subsequent cyst maturation. Syncytial development progressed faster in the resistant cultivar Chebec than in the susceptible cultivar Skiff, and was accompanied by changes in cell wall polysaccharide abundance, particularly (1,3;1,4)-β-glucan. Transcriptional profiling identified several glycosyl transferase genes, including CELLULOSE SYNTHASE-LIKE F10 (HvCslF10), which may contribute to differences in polysaccharide abundance between resistant and susceptible cultivars. In barley, Rha2-mediated CCN resistance drives rapid deterioration of CCN feeding sites, specific changes in cell wall-related transcript abundance and changes in cell wall composition. During H. avenae infection, (1,3;1,4)-β-glucan may influence CCN feeding site development by limiting solute flow, similar to (1,3)-β-glucan during dicot cyst nematode infections. Dynamic transcriptional changes in uncharacterized HvCslF genes, possibly involved in (1,3;1,4)-β-glucan synthesis, suggest a role for these genes in the CCN infection process. © 2015 The University of Adelaide. New Phytologist © 2015 New Phytologist Trust.
    New Phytologist 03/2015; DOI:10.1111/nph.13349 · 6.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In cereals, the presence of soluble polysaccharides including (1,3;1,4)-β-glucan has downstream implications for human health, animal feed and biofuel applications. Sorghum bicolor (L.)Moench is a versatile crop, but there are limited reports regarding the content of such soluble polysaccharides. Here, the amount of (1,3;1,4)-β-glucan present in sorghum tissues was measured using a Megazyme assay. Very low amounts were present in the grain, ranging from 0.16%-0.27% (w/w), while there was a greater quantity in vegetative tissues at 0.12-1.71% (w/w). The fine structure of (1,3;1,4)-β-glucan, as denoted by the ratio of cellotriosyl and cellotetraosyl residues, was assessed by HPLC and ranged from 2.6-3:1 in the grain, whilst ratios in vegetative tissues were lower at 2.1-2.6:1. The distribution of (1,3;1,4)-β-glucan was examined using a specific antibody and observed with fluorescence and transmission electron microscopy. Micrographs showed a variable distribution of (1,3;1,4)-β-glucan influenced by temporal and spatial factors. The sorghum orthologues of genes implicated in the synthesis of (1,3;1,4)-β-glucan in other cereals, such as the Cellulose synthase-like (Csl) F and H gene families were defined. Transcript profiling of these genes across sorghum tissues was carried out using real-time quantitative PCR, indicating that, as in other cereals, CslF6 transcripts dominated. This article is protected by copyright. All rights reserved.
    Journal of Integrative Plant Biology 02/2015; DOI:10.1111/jipb.12338 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cellulose synthase-like gene HvCslF6, which is essential for (1,3;1,4)-β-glucan biosynthesis in barley, collocates with quantitative trait loci (QTL) for grain (1,3;1,4)-β-glucan concentration in several populations, including CDC Bold × TR251. Here, an alanine-to-threonine substitution (caused by the only non-synonymous difference between the CDC Bold and TR251 HvCslF6 alleles) was mapped to a position within HvCSLF6 that seems unlikely to affect enzyme stability or function. Consistent with this, transient expression of full-length HvCslF6 cDNAs from CDC Bold and TR251 in Nicotiana benthamiana led to accumulation of similar amounts of (1,3;1,4)-β-glucan accumulation. Monitoring of HvCslF6 transcripts throughout grain development revealed a significant difference late in grain development (more than 30 days after pollination), with TR251 [the parent with higher grain (1,3;1,4)-β-glucan] exhibiting higher transcript levels than CDC Bold. A similar difference was observed between Beka and Logan, the parents of another population in which a QTL had been mapped in the HvCslF6 region. Sequencing of a putative promoter region of HvCslF6 revealed numerous polymorphisms between CDC Bold and TR251, but none between Beka and Logan. While the results of this work indicate that naturally occurring quantitative differences in (1,3;1,4)-β-glucan accumulation may be due to cis-regulated differences in HvCslF6 expression, these could not be attributed to any specific DNA sequence polymorphism. Nevertheless, information on HvCslF6 sequence polymorphism was used to develop molecular markers that could be used in barley breeding to select for the desired [low or high (1,3;1,4)-β-glucan] allele of the QTL.
    Molecular Breeding 01/2015; 35(1-1):1-12. DOI:10.1007/s11032-015-0208-6 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (1,3;1,4)-beta-Glucan is an important component of the cell walls of barley grain as it affects processability during the production of alcoholic beverages and has significant human health benefits when consumed above recommended threshold levels. This leads to diametrically opposed quality requirements for different applications as low levels of (1,3;1,4)-beta-glucan are required for brewing and distilling and high levels for positive impacts on human health.
    BMC Genomics 10/2014; 15(1):907. DOI:10.1186/1471-2164-15-907 · 4.04 Impact Factor
  • Rachel A Burton, Geoffrey B Fincher
    [Show abstract] [Hide abstract]
    ABSTRACT: The composition of cell walls in cereal grains and other grass species differs markedly from walls in seeds of other plants. In the maternal tissues that surround the embryo and endosperm of the grain, walls contain higher levels of cellulose and in many cases are heavily lignified. This may be contrasted with walls of the endosperm, where the amount of cellulose is relatively low, and the walls are generally not lignified. The low cellulose and lignin contents are possible because the walls of the endosperm perform no load-bearing function in the mature grain and indeed the low levels of these relatively intractable wall components are necessary because they allow rapid degradation of the walls following germination of the grain. The major non-cellulosic components of endosperm walls are usually heteroxylans and (1,3;1,4)-β-glucans, with lower levels of xyloglucans, glucomannans, and pectic polysaccharides. Pectic polysaccharides and xyloglucans are the major non-cellulosic wall constituents in most dicot species, in which (1,3;1,4)-β-glucans are usually absent and heteroxylans are found at relatively low levels. Thus, the "core" non-cellulosic wall polysaccharides in grain of the cereals and other grasses are the heteroxylans and, more specifically, arabinoxylans. The (1,3;1,4)-β-glucans appear in the endosperm of some grass species but are essentially absent from others; they may constitute from zero to more than 45% of the cell walls of the endosperm, depending on the species. It is clear that in some cases these (1,3;1,4)-β-glucans function as a major store of metabolizable glucose in the grain. Cereal grains and their constituent cell wall polysaccharides are centrally important as a source of dietary fiber in human societies and breeders have started to select for high levels of non-cellulosic wall polysaccharides in grain. To meet end-user requirements, it is important that we understand cell wall biology in the grain both during development and following germination.
    Frontiers in Plant Science 09/2014; 5:456. DOI:10.3389/fpls.2014.00456 · 3.64 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: In plants, cell walls are one of the first lines of defence for protecting cells from successful invasion by fungal pathogens and are a major factor in basal host resistance. For the plant cell to block penetration attempts, it must adapt its cell wall to withstand the physical and chemical forces applied by the fungus.Papillae that have been effective in preventing penetration by pathogens are traditionally believed to contain callose as the main polysaccharide component. Here, we have re-examined the composition of papillae of barley (Hordeum vulgare) attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) using a range of antibodies and carbohydrate-binding modules that are targeted to cell wall polysaccharides.The data show that barley papillae induced during infection with Bgh contain, in addition to callose, significant concentrations of cellulose and arabinoxylan. Higher concentrations of callose, arabinoxylan and cellulose are found in effective papillae, compared with ineffective papillae. The papillae have a layered structure, with the inner core consisting of callose and arabinoxylan and the outer layer containing arabinoxylan and cellulose.The association of arabinoxylan and cellulose with penetration resistance suggests new targets for the improvement of papilla composition and enhanced disease resistance.
    New Phytologist 08/2014; 204(3). DOI:10.1111/nph.12974 · 6.55 Impact Factor
  • Rachel A Burton, Geoffrey B Fincher
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production.
    Current Opinion in Biotechnology 04/2014; 26C:79-84. DOI:10.1016/j.copbio.2013.10.007 · 8.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β- glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls.
    PLoS ONE 03/2014; 9(3):e90888. DOI:10.1371/journal.pone.0090888 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The elongating maize internode represents a useful system for following development of cell walls in vegetative cells in the Poaceae family. Elongating internodes can be divided into four developmental zones, namely the basal intercalary meristem, above which are found the elongation, transition and maturation zones. Cells in the basal meristem and elongation zones contain mainly primary walls, while secondary cell wall deposition accelerates in the transition zone and predominates in the maturation zone. The major wall components cellulose, lignin and glucuronoarabinoxylan (GAX) increased without any abrupt changes across the elongation, transition and maturation zones, although GAX appeared to increase more between the elongation and transition zones. Microarray analyses show that transcript abundance of key glycosyl transferase genes known to be involved in wall synthesis or re-modelling did not match the increases in cellulose, GAX and lignin. Rather, transcript levels of many of these genes were low in the meristematic and elongation zones, quickly increased to maximal levels in the transition zone and lower sections of the maturation zone, and generally decreased in the upper maturation zone sections. Genes with transcript profiles showing this pattern included secondary cell wall CesA genes, GT43 genes, some beta-expansins, UDP-Xylose synthase and UDP-Glucose pyrophosphorylase, some xyloglucan endotransglycosylases/hydrolases, genes involved in monolignol biosynthesis, and NAM and MYB transcription factor genes. The data indicated that the enzymic products of genes involved in cell wall synthesis and modification remain active right along the maturation zone of elongating maize internodes, despite the fact that corresponding transcript levels peak earlier, near or in the transition zone.
    BMC Plant Biology 01/2014; 14(1):27. DOI:10.1186/1471-2229-14-27 · 3.94 Impact Factor
  • 12/2013; DOI:10.1094/CPLEX-2013-1226-21W
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To explain the low levels of starch, high levels of (1,3;1,4)-β-glucan, and thick cell walls in grains of Brachypodium distachyon L. relative to those in other Pooideae, aspects of grain development were compared between B. distachyon and barley (Hordeum vulgare L.). Cell proliferation, cell expansion, and endoreduplication were reduced in B. distachyon relative to barley and, consistent with these changes, transcriptional downregulation of the cell-cycle genes CDKB1 and cyclin A3 was observed. Similarly, reduced transcription of starch synthase I and starch-branching enzyme I was observed as well as reduced activity of starch synthase and ADP-glucose pyrophosphorylase, which are consistent with the lowered starch content in B. distachyon grains. No change was detected in transcription of the major gene involved in (1,3;1,4)-β-glucan synthesis, cellulose synthase-like F6. These results suggest that, while low starch content results from a reduced capacity for starch synthesis, the unusually thick cell walls in B. distachyon endosperm probably result from continuing (1,3;1,4)-β-glucan deposition in endosperm cells that fail to expand. This raises the possibility that endosperm expansion is linked to starch deposition.
    Journal of Experimental Botany 09/2013; DOI:10.1093/jxb/ert292 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Endo-(1,4)-beta-glucanase (cellulase) glycosyl hydrolase GH9 enzymes have been implicated in several aspects of cell wall metabolism in higher plants, including cellulose biosynthesis and degradation, modification of other wall polysaccharides that contain contiguous (1,4)-beta-glucosyl residues, and wall loosening during cell elongation. RESULTS: The endo-(1,4)-beta-glucanase gene families from barley (Hordeum vulgare), maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa) and Brachypodium (Brachypodium distachyon) range in size from 23 to 29 members. Phylogenetic analyses show variations in clade structure between the grasses and Arabidopsis, and indicate differential gene loss and gain during evolution. Map positions and comparative studies of gene structures allow orthologous genes in the five species to be identified and synteny between the grasses is found to be high. It is also possible to differentiate between homoeologues resulting from ancient polyploidizations of the maize genome. Transcript analyses using microarray, massively parallel signature sequencing and quantitative PCR data for barley, rice and maize indicate that certain members of the endo-(1,4)-beta-glucanase gene family are transcribed across a wide range of tissues, while others are specifically transcribed in particular tissues. There are strong correlations between transcript levels of several members of the endo-(1,4)-beta-glucanase family and the data suggest that evolutionary conservation of transcription exists between orthologues across the grass family. There are also strong correlations between certain members of the endo-(1,4)-beta-glucanase family and other genes known to be involved in cell wall loosening and cell expansion, such as expansins and xyloglucan endotransglycosylases. CONCLUSIONS: The identification of these groups of genes will now allow us to test hypotheses regarding their functions and joint participation in wall synthesis, re-modelling and degradation, together with their potential role in lignocellulose conversion during biofuel production from grasses and cereal crop residues.
    BMC Plant Biology 12/2012; 12(1):235. DOI:10.1186/1471-2229-12-235 · 3.94 Impact Factor
  • Source
    Dataset: JNature12
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Barley (Hordeum vulgare L.) is among the world's earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 'high-confidence' genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.
    Nature 10/2012; DOI:10.1038/nature11543 · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis.
    Nature Protocol 08/2012; 7(9):1590-607. DOI:10.1038/nprot.2012.081 · 8.36 Impact Factor
  • Source
    Rachel A Burton, Geoffrey B Fincher
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant cell walls consist predominantly of polysaccharides and lignin. There has been a surge of research activity in plant cell wall biology in recent years, in two key areas. Firstly, in the area of human health it is now recognized that cell wall polysaccharides are key components of dietary fiber, which carries significant health benefits. Secondly, plant cell walls are major constituents of lignocellulosic residues that are being developed as renewable sources of liquid transport biofuels. In both areas, the cell walls of the Poaceae, which include the cereals and grasses, are particularly important. The non-cellulosic wall polysaccharides of the Poaceae differ in comparison with those of other vascular plants, insofar as they contain relatively high levels of heteroxylans as "core" polysaccharide constituents and relatively smaller amounts of heteromannans, pectic polysaccharides, and xyloglucans. Certain grasses and cereals walls also contain (1,3;1,4)-β-glucans, which are not widely distributed outside the Poaceae. Although some genes involved in cellulose, heteroxylan, and (1,3;1,4)-β-glucan synthesis have been identified, mechanisms that control expression of the genes are not well defined. Here we review current knowledge of cell wall biology in plants and highlight emerging technologies that are providing new and exciting insights into the most challenging questions related to the synthesis, re-modeling and degradation of wall polysaccharides.
    Frontiers in Plant Science 06/2012; 3:130. DOI:10.3389/fpls.2012.00130 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunolabeling, combined with chemical analyses and transcript profiling, have provided a comprehensive temporal and spatial picture of the deposition and modification of cell wall polysaccharides during barley (Hordeum vulgare) grain development, from endosperm cellularization at 3 d after pollination (DAP) through differentiation to the mature grain at 38 DAP. (1→3)-β-D-Glucan appears transiently during cellularization but reappears in patches in the subaleurone cell walls around 20 DAP. (1→3, 1→4)-β-Glucan, the most abundant polysaccharide of the mature barley grain, accumulates throughout development. Arabino-(1-4)-β-D-xylan is deposited significantly earlier than we previously reported. This was attributable to the initial deposition of the polysaccharide in a highly substituted form that was not recognized by antibodies commonly used to detect arabino-(1-4)-β-D-xylans in sections of plant material. The epitopes needed for antibody recognition were exposed by pretreatment of sections with α-L-arabinofuranosidase; this procedure showed that arabino-(1-4)-β-D-xylans were deposited as early as 5 DAP and highlighted their changing structures during endosperm development. By 28 DAP labeling of hetero-(1→4)-β-D-mannan is observed in the walls of the starchy endosperm but not in the aleurone walls. Although absent in mature endosperm cell walls we now show that xyloglucan is present transiently from 3 until about 6 DAP and disappears by 8 DAP. Quantitative reverse transcription-polymerase chain reaction of transcripts for GLUCAN SYNTHASE-LIKE, Cellulose Synthase, and CELLULOSE SYNTHASE-LIKE genes were consistent with the patterns of polysaccharide deposition. Transcript profiling of some members from the Carbohydrate-Active Enzymes database glycosyl transferase families GT61, GT47, and GT43, previously implicated in arabino-(1-4)-β-d-xylan biosynthesis, confirms their presence during grain development.
    Plant physiology 04/2012; 159(2):655-70. DOI:10.1104/pp.111.192682 · 7.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arabinoxylan arabinofuranohydrolases (AXAHs) are family GH51 enzymes that have been implicated in the removal of arabinofuranosyl residues from the (1,4)-β-xylan backbone of heteroxylans. Five genes encoding barley AXAHs range in size from 4.6 kb to 7.1 kb and each contains 16 introns. The barley HvAXAH genes map to chromosomes 2H, 4H, and 5H. A small cluster of three HvAXAH genes is located on chromosome 4H and there is evidence for gene duplication and the presence of pseudogenes in barley. The cDNAs corresponding to barley and wheat AXAH genes were cloned, and transcript levels of the genes were profiled across a range of tissues at different developmental stages. Two HvAXAH cDNAs that were successfully expressed in Nicotiana benthamiana leaves exhibited similar activities against 4-nitrophenyl α-L-arabinofuranoside, but HvAXAH2 activity was significantly higher against wheat flour arabinoxylan, compared with HvAXAH1. HvAXAH2 also displayed activity against (1,5)-α-L-arabinopentaose and debranched arabinan. Western blotting with an anti-HvAXAH antibody was used to define further the locations of the AXAH enzymes in developing barley grain, where high levels were detected in the outer layers of the grain but little or no protein was detected in the endosperm. The chromosomal locations of the genes do not correspond to any previously identified genomic regions shown to influence heteroxylan structure. The data are therefore consistent with a role for AXAH in depolymerizing arabinoxylans in maternal tissues during grain development, but do not provide compelling evidence for a role in remodelling arabinoxylans during endosperm or coleoptile development in barley as previously proposed.
    Journal of Experimental Botany 02/2012; 63(8):3031-45. DOI:10.1093/jxb/ers019 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position. Few or no changes in noncellulosic wall polysaccharides could be detected on the upper side of the pulvinus, and crystalline cellulose content remained essentially constant in both the upper and lower pulvinus. Microarray analyses showed that spatial and temporal changes in transcript profiles were consistent with the changes in wall composition that were observed in the lower regions of the pulvinus. In addition, the microarray analyses indicated that metabolic pathways leading to the biosynthesis of phytohormones were differentially activated in the upper and lower regions of the pulvinus in response to gravistimulation. Metabolite profiles and measured hormone concentrations were consistent with the microarray data, insofar as auxin, physiologically active gibberellic acid, and metabolites potentially involved in lignin biosynthesis increased in the elongating cells of the lower pulvinus.
    Plant physiology 06/2011; 156(4):2155-71. DOI:10.1104/pp.111.179606 · 7.39 Impact Factor

Publication Stats

6k Citations
847.77 Total Impact Points

Institutions

  • 1994–2014
    • University of Adelaide
      • • School of Agriculture, Food and Wine
      • • Australian Centre for Plant Functional Genomics
      Tarndarnya, South Australia, Australia
  • 2013
    • National Institute of Agricultural Botany
      Cambridge, England, United Kingdom
  • 2012
    • Helmholtz Zentrum München
      München, Bavaria, Germany
    • University of Melbourne
      • School of Botany
      Melbourne, Victoria, Australia
    • The Commonwealth Scientific and Industrial Research Organisation
      Canberra, Australian Capital Territory, Australia
  • 2011
    • Washington State University
      Pullman, Washington, United States
  • 2010
    • Australian Centre for Plant Functional Genomics (ACPFG)
      Tarndarnya, South Australia, Australia
  • 2009
    • California State University, Long Beach
      • Department of Biological Sciences
      Long Beach, CA, United States
    • French National Centre for Scientific Research
      • Centre de Recherches sur les Macromolécules Végétales
      Lutetia Parisorum, Île-de-France, France
  • 2002
    • John Innes Centre
      Norwich, England, United Kingdom
  • 1982–1995
    • La Trobe University
      • Department of Biochemistry
      Melbourne, Victoria, Australia
  • 1986
    • University of Vic
      Vic, Catalonia, Spain
  • 1984
    • Washington University in St. Louis
      • Department of Biology
      Saint Louis, MO, United States