Zhou-Yan Bian

Renmin University of China, Peping, Beijing, China

Are you Zhou-Yan Bian?

Claim your profile

Publications (35)166.46 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell apoptosis induced by Angiotensin II (Ang II) has a critical role in the development of cardiovascular diseases. The aim of the present study was to investigate whether sanguinarine (SAN), a drug which was proved to have anti‑oxidant, anti‑proliferative and immune enhancing effects, can abolish cell apoptosis induced by Ang II. In the present study, H9c2 cardiac cells were stimulated with 10 µM Ang II with or without SAN. The level of intracellular reactive oxygen species (ROS) generation was assessed using dichlorodihydrofluorescein diacetate, and changes of the mitochondrial membrane potential (MMP) were assessed using JC‑1 staining. Furthermore, mRNA expression of NOX2 was determined by reverse transcription quantitative polymerase chain reaction, and apoptosis was detected by Annexin V/propidium iodide staining and flow cytometry. The expression of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) as well as cleaved (c)‑caspase 3 and ‑9 were detected by western blot analysis, and the activity of caspase 3 and ‑9 was detected using an ELISA. The results of the present study showed that NOX2 expression and ROS generation induced by Ang II were inhibited by SAN, and the Ang 2‑induced MMP loss was also ameliorated. Furthermore, Ang II‑induced H9c2 cardiac cell apoptosis as well as c‑caspase 3 and ‑9 levels were significantly reduced by SAN. Investigation of the possible pathway involved in the anti‑apoptotic effect of SAN showed that the expression of Bcl‑2 was decreased, while that of Bax was increased following stimulation with Ang II, which was reversed following treatment with SAN. In addition, Ang II enhanced the activity of caspase 9 and cleaved downstream caspases such as caspase‑3, initiating the caspase cascade, while pre‑treatment of H9c2 cardiac cells with SAN blocked these effects. In conclusion, the findings of the present study indicated that SAN inhibits the apoptosis of H9c2 cardiac cells induced by Ang II, most likely via restoring ROS‑mediated decreases of the MMP.
    Molecular Medicine Reports 05/2015; DOI:10.3892/mmr.2015.3841 · 1.48 Impact Factor
  • International journal of cardiology 03/2015; 186:146-147. DOI:10.1016/j.ijcard.2015.03.294 · 6.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3,3'-Diindolylmethane (DIM) is the major product of the acid-catalyzed condensation of indole-3-carbinol (I3C), a component of extracts of Brassica food plants. Numerous studies have suggested that DIM has several beneficial biological activities, including elimination of free radicals, antioxidant and anti‑angiogenic effects and activation of apoptosis of various tumor cells. In the present study, an in vitro model was established, using 1 µM angiotensin II (Ang II) in cultured rat cardiac H9c2 cells, to observe the effects of DIM on cardiac hypertrophy. Following 24 h stimulation with DIM (1, 5, and 10 µM) with or without Ang II, cells were characterized by immunofluorescence to analyze cardiac α‑actinin expression. Cardiomyocyte hypertrophy and molecular markers of cardiac hypertrophy were assessed by quantitative polymerase chain reaction. Atrial natriuretic peptide, brain natriuretic peptide and myosin heavy chain β mRNA expression were induced by Ang II in H9c2 cells treated with the optimal concentration of DIM for 6, 12, and 24 h. The levels of phosphorylated and total proteins of the 5' AMP‑activated protein kinase α (AMPKα)/mitogen‑activated protein kinase (MAPK)/mechanistic target of rapamycin (mTOR) signaling pathways in H9c2 cells treated with DIM for 0, 15, 30, and 60 min induced by Ang II were determined by western blot analysis. The results showed that DIM attenuated cellular hypertrophy in vitro, enhanced the phosphorylation of AMPKα and inhibited the MAPK‑mTOR signaling pathway in response to hypertrophic stimuli.
    Molecular Medicine Reports 03/2015; DOI:10.3892/mmr.2015.3523 · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The inflammatory response is involved in the pathogenesis of the most common forms of heart disease. Icariin has a number of pharmacological actions, including anti‑inflammatory, anti‑oxidative and anti‑apoptotic effects. However, the role of icariin in cardiac inflammation has remained elusive. In the present study, H9c2 rat cardiomyocytes were stimulated by lipopolysaccharide (LPS) and treated with icariin. The results showed that icariin significantly reduced the increase in the mRNA expression of tumor necrosis factor α, interleukin (IL)‑1β and IL‑6 that occurred in response to LPS. Furthermore, icariin regulated the expression of B-cell lymphoma 2 and B-cell lymphoma 2-associated X, and rescued H9c2 cells from apoptosis. Incubation with 2',7'‑dichlorofluorescein diacetate demonstrated that icariin inhibited the production of intracellular reactive oxygen species (ROS). In addition, the phosphorylation of c‑Jun N‑terminal kinases (JNK), the degradation of inhibitor of κB and the nuclear translocation of nuclear factor‑κB (NF‑κB) p65 in LPS‑treated H9c2 cells were blocked by icariin treatment. These results suggested that icariin prevented cardiomyocytes from inflammatory response and apoptosis, and that this effect may be mediated by inhibition of the ROS‑dependent JNK/NF‑κB pathway.
    Molecular Medicine Reports 01/2015; DOI:10.3892/mmr.2015.3289 · 1.48 Impact Factor
  • Journal of the American College of Cardiology 10/2014; 64(16):C52-C53. DOI:10.1016/j.jacc.2014.06.255 · 15.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)-induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart-derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II-induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B-type natriuretic peptide, in a concentration-dependent manner. The cell surface area of Ang II-treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II-induced cell apoptosis and protein expression levels of Bax and cleaved-caspase 3, while the expression of Bcl-2 was increased by icariin. In addition, 2',7'-dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in Ang II-treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II-induced hypertrophy and apoptosis by inhibiting the ROS-dependent JNK and p38 pathways.
    Experimental and therapeutic medicine 05/2014; 7(5):1116-1122. DOI:10.3892/etm.2014.1598 · 0.94 Impact Factor
  • International journal of cardiology 04/2014; 174(3). DOI:10.1016/j.ijcard.2014.04.160 · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dickkopf-3 (DKK3), a secreted protein in the Dickkopf family, is expressed in various tissues, including the heart, and has been shown to play an important role in tissue development. However, the biological function of DKK3 in the heart remains largely unexplored. This study aimed to examine the role of DKK3 in pathological cardiac hypertrophy.Methods and ResultsWe performed gain-of-function and loss-of-function studies using DKK3 cardiac-specific transgenic mice and DKK3 knockout mice (C57BL/6 J background). Cardiac hypertrophy was induced by aortic banding. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. Our results demonstrated that the loss of DKK3 exaggerated pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction, whereas the overexpression of DKK3 protected the heart against pressure overload-induced cardiac remodeling. These beneficial effects were associated with the inhibition of the ASK1-JNK/p38 (apoptosis signal-regulating kinase 1-c-Jun N-terminal kinase/p38) signaling cascade. Parallel in vitro experiments confirmed these in vivo observations. Co-immunoprecipitation experiments suggested that physical interactions occurred between DKK3 and ASK1. Moreover, rescue experiments indicated that in DKK3 transgenic mice, the activation of ASK1 using a cardiac specific conditional ASK1 transgene reduced the functionality of DKK3 in response to pressure overload; furthermore, the inactivation of ASK1 by dominant-negative ASK1 rescued pressure overload-induced cardiac abnormalities in DKK3 knockout mice. Taken together, our findings indicate that DKK3 acts as a cardioprotective regulator of pathological cardiac hypertrophy and that this function largely occurs via the regulation of ASK1-JNK/p38 signaling.
    Cardiovascular Research 01/2014; 102(1). DOI:10.1093/cvr/cvu004 · 5.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal regulatory protein-α (SIRPA/SIRPα) is a transmembrane protein that is expressed in various tissues, including the heart. Previous studies have demonstrated that SIRPA is involved in multiple biological processes, including macrophage multinucleation, skeletal muscle differentiation, neuronal survival, protection against diabetes mellitus, and negative regulation of immune cells. However, the role of SIRPA in cardiac hypertrophy remains unknown. To examine the role of SIRPA in pathological cardiac hypertrophy, we used SIRPA knockout mice and transgenic mice that overexpressed mouse SIRPA in the heart. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. We observed downregulation of SIRPA expression in dilated cardiomyopathy human hearts and in animal hearts after aortic banding surgery. Accordingly, SIRPA(-/-) mice displayed augmented cardiac hypertrophy, which was accompanied by increased cardiac fibrosis and reduced contractile function, as compared with SIRPA(+/+) mice 4 weeks after aortic banding. In contrast, transgenic mice with the cardiac-specific SIRPA overexpression exhibited the opposite phenotype in response to pressure overload. Likewise, SIRPA protected against angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we revealed that SIRPA-mediated protection during cardiac hypertrophy involved inhibition of the Toll-like receptor 4/nuclear factor-κB signaling axis. Furthermore, we demonstrated that the disruption of Toll-like receptor 4 rescued the adverse effects of SIRPA deficiency on pressure overload-triggered cardiac remodeling. Thus, our results identify that SIRPA plays a protective role in cardiac hypertrophy through negative regulation of the Toll-like receptor 4/nuclear factor-κB pathway.
    Hypertension 10/2013; 63(1). DOI:10.1161/HYPERTENSIONAHA.113.01506 · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleotide-binding oligomerization domain-2 (NOD2, also designated CARD15), a member of the NOD-leucine-rich repeat (LRR) protein family (also called the CATERPILLAR family), is upregulated in atheroma lesions and has an important role in regulating the intracellular recognition of bacterial components by immune cells. However, the effect of NOD2 on cardiac hypertrophy induced by a pathological stimulus has not been determined. Here, we investigated the effects of NOD2 deficiency on cardiac hypertrophy induced by aortic banding (AB) in mice. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. NOD2 expression was upregulated in cardiomyocytes after aortic banding surgery in wild-type (WT) mice. NOD2 deficiency promoted cardiac hypertrophy and fibrosis 4 weeks after AB. Further, the enhanced activation of TLR4 and the MAPKs, NF-κB and TGF-β/Smad pathways were found in NOD2-knockout (KO) mice compared with WT mice. Our results suggest that NOD2 attenuates cardiac hypertrophy and fibrosis via regulation of multiple pathways.Laboratory Investigation advance online publication, 19 August 2013; doi:10.1038/labinvest.2013.99.
    Laboratory Investigation 08/2013; 93(10). DOI:10.1038/labinvest.2013.99 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Puerarin is the most abundant isoflavonoid in kudzu root. It has been used to treat angina pectoris and myocardial infarction clinically. However, little is known about the effect of puerarin on cardiac hypertrophy. Aortic banding (AB) was performed to induce cardiac hypertrophy in mice. Puerarin premixed in diets was administered to mice after one week of AB. Echocardiography and catheter-based measurements of hemodynamic parameters were performed at 7 weeks after starting puerarin treatment (8 weeks post-surgery). The extent of cardiac hypertrophy was also evaluated by pathological and molecular analyses of heart samples. Cardiomyocyte apoptosis was assessed by measuring Bax and Bcl-2 protein expression and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In addition, the inhibitory effect of puerarin (1μM, 5μM, 10μM, 20μM, 40μM) on mRNA expression of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in Ang II (1μM)-stimulated H9c2 cells was investigated using quantitative real-time reverse transcription-polymerase chain reaction. Echocardiography and catheter-based measurements of hemodynamic parameters at 7 weeks revealed the amelioration of systolic and diastolic abnormalities. Puerarin also decreased cardiac fibrosis in AB mice. Moreover, the beneficial effect of puerarin was associated with the normalization in gene expression of hypertrophic and fibrotic markers. Further studies showed that pressure overload significantly induced the activation of phosphoinositide 3-kinase (PI3K)/Akt signaling and c-Jun N-terminal kinase (JNK) signaling, which was blocked by puerarin treatment. Cardiomyocyte apoptosis and induction of Bax in response to AB were suppressed by puerarin. Furthermore, the increased mRNA expression of ANP and BNP induced by Ang II (1μM) was restrained to a different extent by different concentrations of puerarin. Puerarin may have an ability to retard the progression of cardiac hypertrophy and apoptosis which is probably mediated by the blockade of PI3K/Akt and JNK signaling pathways.
    Journal of Cardiology 07/2013; 63(1). DOI:10.1016/j.jjcc.2013.06.008 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the prognostic value of late gadolinium enhancement (LGE) in dilated cardiomyopathy (DCM) patients. We searched PubMed, MEDLINE, the Cochrane library and EMBASE databases from September to December 2012 in the Renmin Hospital of Wuhan University, Wuhan, China for studies of LGE in DCM patients. We extracted the clinical outcomes (all-cause mortality, cardiovascular mortality, sudden cardiac death [SCD], aborted SCD, heart failure hospitalization) after carefully reviewed. A meta-analysis was performed to calculate pooled odds ratios (OR) with 95% confidence intervals (CIs) for prognostic outcomes in LGE positive versus LGE negative patients with DCM. Five studies for 545 DCM patients were contained in this meta-analysis. The results showed LGE positive patients was significantly associated with higher cardiovascular mortality (pooled OR: 2.67; 95% CI: 1.12-6.35; p=0.03), aborted SCD (pooled OR: 5.26; 95% CI: 1.57-17.55; p=0.007), and heart failure hospitalization (pooled OR: 3.91; 95% CI: 1.99-7.69; p<0.001). Late gadolinium enhancement during cardiac MRI is significantly associated with cardiovascular mortality, aborted SCD and heart failure hospitalization in DCM patients. The LGE can be a potential stratification tool to predict the risk of cardiac events among patients with DCM.
    Saudi medical journal 07/2013; 34(7):719-26. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Baicalein, a flavonoid present in the root of Scutellaria baicalensis, is well known for its antibacterial, antiviral, anti-inflammatory antithrombotic and antioxidant effects. Here we show that baicalein also attenuates cardiac hypertrophy. Aortic banding(AB) was performed to induce cardiac hypertrophy secondary to pressure overload in mice. Mouse chow containing 0.05% baicalein (dose: 100mg/kg/d baicalein) was begun one week prior to surgery and continued for 8 weeks after surgery. Our data demonstrated that baicalein prevented cardiac hypertrophy and fibrosis induced by AB, as assessed by echocardiographic and hemodynamic parameters and by pathological and molecular analysis. The inhibitory action of baicalein on cardiac hypertrophy was mediated by effects on mitogen activated protein kinase kinase (MEK)-extracellular signal-regulated kinases (ERK1/2) signaling and GATA-4 activation. In vitro studies performed in rat cardiac H9c2 cells confirmed that baicalein attenuated cardiomyocyte hypertrophy induced by angiotensin II, which was associated with inhibiting MEK-ERK1/2 signaling. In conclusion, our results suggest that baicalein has protective potential for targeting cardiac hypertrophy and fibrosis through suppression of MEK-ERK1/2 signaling. Baicalein warrants further research as a potential antihypertrophic agent that might be clinically useful to treat cardiac hypertrophy and heart failure. J. Cell. Biochem. © 2012 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 05/2013; 114(5). DOI:10.1002/jcb.24445 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IRF4, a member of the interferon regulatory factor (IRF) family, was previously shown to be restricted in the immune system and involved in the differentiation of immune cells. However, we interestingly observed that IRF4 was also highly expressed in both human and animal hearts. Given that several transcription factors have been shown to regulate the pathological cardiac hypertrophy, we then ask whether IRF4, as a new transcription factor, plays a critical role in pressure overload-elicited cardiac remodeling. A transgenic mouse model with cardiac-specific overexpression of IRF4 was generated and subjected to an aortic banding for 4 to 8 weeks. Our results demonstrated that overexpression of IRF4 aggravated pressure overload-triggered cardiac hypertrophy, fibrosis, and dysfunction. Conversely, IRF4 knockout mice showed an attenuated hypertrophic response to chronic pressure overload. Mechanistically, we discovered that the expression and activation of cAMP response element-binding protein (CREB) were significantly increased in IRF4-overexpressing hearts, while being greatly reduced in IRF4-KO hearts on aortic banding, compared with control hearts, respectively. Similar results were observed in ex vivo cultured neonatal rat cardiomyocytes on the treatment with angiotensin II. Inactivation of CREB by dominant-negative mutation (dnCREB) offset the IRF4-mediated hypertrophic response in angiotensin II-treated myocytes. Furthermore, we identified that the promoter region of CREB contains 3 IRF4 binding sites. Altogether, these data indicate that IRF4 functions as a necessary modulator of hypertrophic response by activating the transcription of CREB in hearts. Thus, our study suggests that IRF4 might be a novel target for the treatment of pathological cardiac hypertrophy and failure.
    Hypertension 04/2013; 61(6). DOI:10.1161/HYPERTENSIONAHA.111.00614 · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor (IRF) 3, a member of the highly conserved IRF family transcription factors, plays a pivotal role in innate immune response, apoptosis, and oncogenesis. Recent studies have implicated IRF3 in a wide range of host defense. However, whether IRF3 induces defensive responses to hypertrophic stresses such as biomechanical stress and neurohumoral factors remains unclear. Herein, we employed an IRF3-deficient mouse model, cardiac-specific IRF3-overexpression mouse model and isolated cardiomyocytes to investigate the role of IRF3 in cardiac hypertrophy induced by aortic banding (AB) or isoproterenol (ISO). The extent of cardiac hypertrophy was quantitated by echocardiography as well as by pathological and molecular analysis. Our results demonstrate that IRF3 deficiency profoundly exacerbated cardiac hypertrophy, whereas overexpression of IRF3 in the heart significantly blunted pathological cardiac remodeling induced by pressure overload. Similar results were also observed in cultured cardiomyocytes upon the treatment with ISO. Mechanistically, we discovered that IRF3 interacted with ERK2 and thereby inhibited the ERK1/2 signaling. Furthermore, inactivation of ERK1/2 by U0126 offset the IRF3-deficient-mediated hypertrophic response induced by aortic banding. Altogether, these data demonstrate that IRF3 plays a protective role in AB-induced hypertrophic response by inactivating ERK1/2 in the heart. Therefore, IRF3 could be a new target for the prevention and therapy of cardiac hypertrophy and failure.
    Archiv für Kreislaufforschung 03/2013; 108(2):326. DOI:10.1007/s00395-012-0326-9 · 5.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac remodeling is a key determinant in the clinical course and outcome of heart failure and characterized by cardiac hypertrophy, fibrosis, cardiomyocyte apoptosis and inflammation. The anti-inflammatory, anti-apoptotic and anti-fibrotic effects of paeoniflorin have been identified in various types of tissue and cells. However, the role of paeoniflorin in cardiac remodeling remains unclear. We performed aortic banding (AB) in mice to induce a cardiac remodeling model in response to pressure overload. Paeoniflorin (20 mg/kg) was administered by daily intraperitoneal (i.p.) injection. Paeoniflorin treatment promoted the survival rate and improved cardiac function of mice at 8 weeks post surgery. AB-induced cardiac hypertrophy, as assessed by heart weight, gross heart, HE and WGA staining, cross-sectional area of cardiomyocyte and mRNA expresssion of hypertrophic makers, was attenuated by paeoniflorin. Paeoniflorin also inhibited collagen deposition, expression of TGFβ, CTGF, collagen Iα and collagen IIIα, and phosphorylation of Smad2 and Smad3 in the heart exposed to pressure overload. Cardiomyocyte apoptosis and induction of Bax and cleaved caspase3 in response to AB were suppressed by paeoniflorin. Furthermore, paeoniflorin decreased the quantity of CD68+ cells, protein levels of TNF-α and IL-1β, and phosphorylation of IκBα and NFκB-p65 in the heart after AB. In conclusion, paeoniflorin attenuated cardiac hypertrophy, fibrosis, apoptosis and inflammation, and improved left ventricular function in pressure overloaded mice. The cardioprotective effect of paeoniflorin is associated with the inhibition of TGFβ/Smads and NF-κB pathways.
    Journal of molecular histology 02/2013; 44(3). DOI:10.1007/s10735-013-9491-x · 1.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inducible IκB kinase (IKKi/IKKε) is a recently described serine-threonine IKK-related kinase. Previous studies have reported the role of IKKi in infectious diseases and cancer. However, its role in the cardiac response to pressure overload remains elusive. In this study, we investigated the effects of IKKi deficiency on the development of pathological cardiac hypertrophy using in vitro and in vivo models. First, we developed mouse models of pressure overload cardiac hypertrophy induced by pressure overload using aortic banding (AB). Four weeks after AB, cardiac function was then assessed through echocardiographic and hemodynamic measurements. Western blotting, real-time PCR and histological analyses were used to assess the pathological and molecular mechanisms. We observed that IKKi-deficient mice showed significantly enhanced cardiac hypertrophy, cardiac dysfunction, apoptosis and fibrosis compared with WT mice. Furthermore, we recently revealed that the IKKi-deficient mice spontaneously develop cardiac hypertrophy. Moreover, in vivo experiments showed that IKKi deficiency-induced cardiac hypertrophy was associated with the activation of the AKT and NF-κB signaling pathway in response to AB. In cultured cells, IKKi overexpression suppressed the activation of this pathway. In conclusion, we demonstrate that IKKi deficiency exacerbates cardiac hypertrophy by regulating the AKT and NF-κB signaling pathway.
    PLoS ONE 01/2013; 8(1):e53412. DOI:10.1371/journal.pone.0053412 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 3,3'-Diindolylmethane (DIM) is a natural component of cruciferous plants. It has strong antioxidant and anti-angiogenic effects and promotes the apoptosis of a variety of tumor cells. However, little is known about the critical role of DIM on cardiac hypertrophy. In the present study, we investigated the effects of DIM on cardiac hypertrophy. Multiple molecular techniques such as Western blot analysis, real-time PCR to determine RNA expression levels of hypertrophic, fibrotic and oxidative stress markers, and histological analysis including H&E for histopathology, PSR for collagen deposition, WGA for myocyte cross-sectional area, and immunohistochemical staining for protein expression were used. In pre-treatment and reverse experiments, C57/BL6 mouse chow containing 0.05% DIM (dose 100 mg/kg/d DIM) was administered one week prior to surgery or one week after surgery, respectively, and continued for 8 weeks after surgery. In both experiments, DIM reduced to cardiac hypertrophy and fibrosis induced by aortic banding through the activation of 5'-adenosine monophosphate-activated protein kinase-α2 (AMPKα2) and inhibition of mammalian target of the rapamycin (mTOR) signaling pathway. Furthermore, DIM protected against cardiac oxidative stress by regulating expression of estrogen-related receptor-alpha (ERRα) and NRF2 etc. The cardioprotective effects of DIM were ablated in mice lacking functional AMPKα2. DIM significantly improves left ventricular function via the activation of AMPKα2 in a murine model of cardiac hypertrophy.
    PLoS ONE 01/2013; 8(1):e53427. DOI:10.1371/journal.pone.0053427 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell antigen (Sca) 1, a glycosyl phosphatidylinositol-anchored protein localized to lipid rafts, is upregulated in the heart during myocardial infarction and renovascular hypertension-induced cardiac hypertrophy. It has been suggested that Sca-1 plays an important role in myocardial infarction. To investigate the role of Sca-1 in cardiac hypertrophy, we performed aortic banding in Sca-1 cardiac-specific transgenic mice, Sca-1 knockout mice, and their wild-type littermates. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. Sca-1 expression was upregulated and detected in cardiomyocytes after aortic banding surgery in wild-type mice. Sca-1 transgenic mice exhibited significantly attenuated cardiac hypertrophy and fibrosis and preserved cardiac function compared with wild-type mice after 4 weeks of aortic banding. Conversely, Sca-1 knockout dramatically worsened cardiac hypertrophy, fibrosis, and dysfunction after pressure overload. Furthermore, aortic banding-induced activation of Src, mitogen-activated protein kinases, and Akt was blunted by Sca-1 overexpression and enhanced by Sca-1 deficiency. Our results suggest that Sca-1 protects against cardiac hypertrophy and fibrosis via regulation of multiple pathways in cardiomyocytes.
    Hypertension 07/2012; 60(3):802-9. DOI:10.1161/HYPERTENSIONAHA.112.198895 · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac hypertrophy is a response of the myocardium to increased workload and is characterised by an increase of myocardial mass and an accumulation of extracellular matrix (ECM). As an ECM protein, an integrin ligand, and an angiogenesis inhibitor, all of which are key players in cardiac hypertrophy, mindin is an attractive target for therapeutic intervention to treat or prevent cardiac hypertrophy and heart failure. In this study, we investigated the role of mindin in cardiac hypertrophy using littermate Mindin knockout (Mindin ( -/- )) and wild-type (WT) mice. Cardiac hypertrophy was induced by aortic banding (AB) or angiotensin II (Ang II) infusion in Mindin ( -/- ) and WT mice. The extent of cardiac hypertrophy was quantitated by echocardiography and by pathological and molecular analyses of heart samples. Mindin ( -/- ) mice were more susceptible to cardiac hypertrophy and fibrosis in response to AB or Ang II stimulation than wild type. Cardiac function was also markedly exacerbated during both systole and diastole in Mindin ( -/- ) mice in response to hypertrophic stimuli. Western blot assays further showed that the activation of AKT/glycogen synthase kinase 3β (GSK3β) signalling in response to hypertrophic stimuli was significantly increased in Mindin ( -/- ) mice. Moreover, blocking AKT/GSK3β signalling with a pharmacological AKT inhibitor reversed cardiac abnormalities in Mindin ( -/- ) mice. Our data show that mindin, as an intrinsic cardioprotective factor, prevents maladaptive remodelling and the transition to heart failure by blocking AKT/GSK3β signalling.
    Journal of Molecular Medicine 02/2012; 90(8):895-910. DOI:10.1007/s00109-012-0883-2 · 4.74 Impact Factor