Martin St Maurice

Marquette University, Milwaukee, WI, United States

Are you Martin St Maurice?

Claim your profile

Publications (32)131.74 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mandelate racemase (MR) from Pseudomonas putida catalyzes the Mg(2+)-dependent, 1,1-proton transfer that interconverts of the enantiomers of mandelate. Since trifluorolactate is also a substrate of MR, we anticipated that replacing the phenyl rings of the competitive, substrate-product analogue inhibitor benzilate (Ki = 0.7 mM) with trifluoromethyl groups might furnish an inhibitor. Surprisingly, the substrate-product analogue 3,3,3-trifluoro-2-hydroxy-2-(trifluoro-methyl)propanoate (TFHTP) was a potent competitive inhibitor (Ki = 27 ± 4 μM cf. Km = 1.2 mM for both (R)-mandelate and trifluorolactate). To understand the origins of this high binding affinity, we solved the X-ray crystal structure of the MR-TFHTP complex to 1.68-Å resolution. Rather than chelating the active site Mg(2+) with its glycolate moiety, like other ground state analogues, TFHTP exhibited a novel binding mode with the two trifluoromethyl groups closely packed against the 20s loop and the carboxylate bridging the two active site Brønsted acid-base catalysts Lys 166 and His 297. Recognizing that positioning a carboxylate between the Brønsted acid-base catalysts could yield an inhibitor, we showed that tartronate was a competitive inhibitor of MR (Ki = 1.8 ± 0.1 mM). The X-ray crystal structure of the MR-tartronate complex (1.80-Å resolution) revealed that the glycolate moiety of tartronate chelated the Mg(2+) and that the carboxylate bridged Lys 166 and His 297. Models of tartronate in monomers A and B of the crystal structure mimicked the binding orientations of (S)-mandelate and that anticipated for (R)-mandelate, respectively. For the latter monomer, the 20s loop appeared disordered, as it also did in the X-ray structure of the MR triple mutant (C92S/C264S/K166C) complexed with benzilate, which was solved to 1.89-Å resolution. These observations indicate that the 20s loop likely undergoes a significant conformational change upon binding (R)-mandelate. In general, our observations suggest that inhibitors of other enolase superfamily enzymes may be designed to capitalize on recognition of the active site Brønsted acid-base catalysts as binding determinants.
    Biochemistry 01/2014; · 3.38 Impact Factor
  • Adam D Lietzan, Martin St Maurice
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotin-dependent enzymes catalyze carboxylation, decarboxylation and transcarboxylation reactions that participate in the primary metabolism of a wide range of organisms. In all cases, the overall reaction proceeds via two half reactions that take place in physically distinct active sites. In the first half-reaction, a carboxyl group is transferred to the 1-N' of a covalently tethered biotin cofactor. The tethered carboxybiotin intermediate subsequently translocates to a second active site where the carboxyl group is either transferred to an acceptor substrate or, in some bacteria and archaea, is decarboxylated to biotin and CO2 in order to power the export of sodium ions from the cytoplasm. A homologous carboxyltransferase domain is found in three enzymes that catalyze diverse overall reactions: carbon fixation by pyruvate carboxylase, decarboxylation and sodium transport by the biotin-dependent oxaloacetate decarboxylase complex, and transcarboxylation by transcarboxylase from Propionibacterium shermanii. Over the past several years, structural data have emerged which have greatly advanced the mechanistic description of these enzymes. This review assembles a uniform description of the carboxyltransferase domain structure and catalytic mechanism from recent studies of pyruvate carboxylase, oxaloacetate decarboxylase and transcarboxylase, three enzymes that utilize an analogous carboxyltransferase domain to catalyze the biotin-dependent decarboxylation of oxaloacetate.
    Archives of Biochemistry and Biophysics 10/2013; · 3.37 Impact Factor
  • Adam D Lietzan, Martin St Maurice
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism.The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotinto the accepting substrate, pyruvate. It has been hypothesized that thereactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site.Whereas bidentate ligands are commonly observedin enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore,both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting thatthe substrate maintains its orientation in the active site throughout catalysis.Together, these structures indicate that thesubstrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metalappears to be a uniquemechanistic feature amongthe small group of biotin-dependent enzymes that act on α-keto acid substrates.
    Biochemical and Biophysical Research Communications 10/2013; · 2.41 Impact Factor
  • Adam D Lietzan, Martin St Maurice
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated, and then translocate to the carboxyl transferase domain where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyl transferase domain of PC from Rhizobium etli. Structures of the carboxyl transferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyl transferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyl transferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.
    Journal of Biological Chemistry 05/2013; · 4.65 Impact Factor
  • Yi Lin, Martin St Maurice
    [Show abstract] [Hide abstract]
    ABSTRACT: Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH3 and CO2. AH belongs to the amidase signature family, which is characterized by a conserved block of 130 amino acids rich in Gly and Ser and a Ser-cisSer-Lys catalytic triad. In the present study, the first structures of AH were solved from Granulibacter bethesdensis, with and without the substrate analog malonate, to 2.2 Å and 2.8 Å, respectively. The structures confirm the identity of the catalytic triad residues and reveal an altered dimerization interface that is not conserved in the amidase signature family. The structures also provide insights into previously unrecognized substrate specificity determinants in AH. Two residues, Tyr299 and Arg307, are within hydrogen bonding distance to a carboxylate moiety of malonate. Both Tyr299 and Arg307 were mutated and the resulting modified enzymes revealed greater than three orders of magnitude reductions in both catalytic efficiency and substrate stringency. It is proposed that Tyr299 and Arg307 serve to anchor and orient the substrate for attack by the catalytic nucleophile, Ser172. The structure further suggests the presence of a unique C-terminal domain in AH. While this domain is conserved, it does not contribute to catalysis or to the structural integrity of the core domain, suggesting that it may play a role in mediating transient and specific interactions with the urea carboxylase component of urea amidolyase. Analysis of the AH active site architecture offers new insights into common determinants of catalysis and specificity among divergent members of the amidase signature family.
    Biochemistry 01/2013; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH-RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.
    The Journal of Cell Biology 11/2012; 199(4):639-51. · 10.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutation of Arg427 and Arg472 in Rhizobium etli pyruvate carboxylase to serine or lysine greatly increased the activation constant (K(a)) of acetyl CoA, with the increase being greater for the Arg472 mutants. These results indicate that while both these residues are involved in the binding of acetyl CoA to the enzyme, Arg472 is more important than Arg427. The mutations had substantially smaller effects on the k(cat) for pyruvate carboxylation. Part of the effects of the mutations was to increase the K(m) for MgATP and the K(a) for activation by free Mg(2+) determined at saturating acetyl CoA concentrations. The inhibitory effects of the mutations on the rates of the enzyme-catalyzed bicarbonate-dependent ATP cleavage, carboxylation of biotin, and phosphorylation of ADP by carbamoyl phosphate indicate that the major locus of the effects of the mutations was in the biotin carboxylase (BC) domain active site. Even though both Arg427 and Arg472 are distant from the BC domain active site, it is proposed that their contacts with other residues in the allosteric domain, either directly or through acetyl CoA, affect the positioning and orientation of the biotin-carboxyl carrier protein (BCCP) domain and thus the binding of biotin at the BC domain active site. On the basis of the kinetic analysis proposed here, it is proposed that mutations of Arg427 and Arg472 perturb these contacts and consequently the binding of biotin at the BC domain active site. Inhibition of pyruvate carboxylation by the allosteric inhibitor l-aspartate was largely unaffected by the mutation of either Arg427 or Arg472.
    Biochemistry 09/2012; · 3.38 Impact Factor
  • Grover L Waldrop, Hazel M Holden, Martin St Maurice
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO(2) carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis.
    Protein Science 09/2012; 21(11):1597-619. · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The activity of the biotin-dependent enzyme pyruvate carboxylase from many organisms is highly regulated by the allosteric activator acetyl-CoA. A number of X-ray crystallographic structures of the native pyruvate carboxylase tetramer are now available for the enzyme from Rhizobium etli and Staphylococcus aureus. Although all of these structures show that intersubunit catalysis occurs, in the case of the R. etli enzyme, only two of the four subunits have the allosteric activator bound to them and are optimally configured for catalysis of the overall reaction. However, it is apparent that acetyl-CoA binding does not induce the observed asymmetrical tetramer conformation and it is likely that, under normal reaction conditions, all of the subunits have acetyl-CoA bound to them. Thus the activation of the enzyme by acetyl-CoA involves more subtle structural effects, one of which may be to facilitate the correct positioning of Arg353 and biotin in the biotin carboxylase domain active site, thereby promoting biotin carboxylation and, at the same time, preventing abortive decarboxylation of carboxybiotin. It is also apparent from the crystal structures that there are allosteric interactions induced by acetyl-CoA binding in the pair of subunits not optimally configured for catalysis of the overall reaction.
    Biochemical Society Transactions 06/2012; 40(3):567-72. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg(2+)-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we determined the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and Cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state and/or intermediate because its binding affinity for 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and Cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, Cupferron, and the ground state analogue (S)-atrolactate reveal that the para carbon of the substrate phenyl ring moves by 0.8-1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to that of MR with bound (S)-atrolactate, the intermediate-Mg(2+) distance becomes shorter, suggesting a tighter complex with the catalytic Mg(2+). In addition, Tyr 54 moves closer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle.
    Biochemistry 02/2012; 51(6):1160-70. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.
    Biochemistry 09/2011; 50(45):9724-37. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg(2+), and nonessential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg(2+) assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain. Initial velocity plots of free Mg(2+) vs pyruvate were nonlinear at low concentrations of Mg(2+) and a nearly complete loss of coupling between the BC and CT domain reactions was observed in the absence of acetyl-CoA. Increasing concentrations of free Mg(2+) also resulted in a decrease in the K(a) for acetyl-CoA. Acetyl phosphate was determined to be a suitable phosphoryl donor for the catalytic phosphorylation of MgADP, while phosphonoacetate inhibited both the phosphorylation of MgADP by carbamoyl phosphate (K(i) = 0.026 mM) and pyruvate carboxylation (K(i) = 2.5 mM). In conjunction with crystal structures of T882A R. etli PC mutant cocrystallized with phosphonoacetate and MgADP, computational docking studies suggest that phosphonoacetate could coordinate to one of two Mg(2+) metal centers in the BC domain active site. Based on the pH profiles, inhibition studies, and initial velocity patterns, possible mechanisms for the activation, regulation, and coordination of catalysis between the two spatially distinct active sites in pyruvate carboxylase from R. etli by acetyl-CoA and Mg(2+) are described.
    Biochemistry 09/2011; 50(45):9694-707. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family.
    Biochemistry 09/2011; 50(45):9708-23. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 2',3'-O-(2,4,6-Trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) is a fluorescent analogue of ATP. MgTNP-ATP was found to be an allosteric activator of pyruvate carboxylase that exhibits competition with acetyl CoA in activating the enzyme. There is no evidence that MgTNP-ATP binds to the MgATP substrate binding site of the enzyme. At concentrations above saturating, MgATP activates bicarbonate-dependent ATP cleavage, but inhibits the overall reaction. The fluorescence of MgTNP-ATP increases by about 2.5-fold upon binding to the enzyme and decreases on addition of saturating acetyl CoA. However, not all the MgTNP-ATP is displaced by acetyl CoA, or with a combination of saturating concentrations of MgATP and acetyl CoA. The kinetics of the binding of MgTNP-ATP to pyruvate carboxylase have been measured and shown to be triphasic, with the two fastest phases having pseudo first-order rate constants that are dependent on the concentration of MgTNP-ATP. The kinetics of displacement from the enzyme by acetyl CoA have been measured and also shown to be triphasic. A model of the binding process is proposed that links the kinetics of MgTNP-ATP binding to the allosteric activation of the enzyme.
    Archives of Biochemistry and Biophysics 03/2011; 509(2):117-26. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The roles of Arg548 and Gln552 residues in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase were investigated using site-directed mutagenesis. Mutation of Arg548 to alanine or glutamine resulted in the destabilization of the quaternary structure of the enzyme, suggesting that this residue has a structural role. Mutations R548K, Q552N, and Q552A resulted in a loss of the ability to catalyze pyruvate carboxylation, biotin-dependent decarboxylation of oxaloacetate, and the exchange of protons between pyruvate and water. These mutants retained the ability to catalyze reactions that occur at the active site of the biotin carboxylase domain, i.e., bicarbonate-dependent ATP cleavage and ADP phosphorylation by carbamoyl phosphate. The effects of oxamate on the catalysis in the biotin carboxylase domain by the R548K and Q552N mutants were similar to those on the catalysis of reactions by the wild-type enzyme. However, the presence of oxamate had no effect on the reactions catalyzed by the Q552A mutant. We propose that Arg548 and Gln552 facilitate the binding of pyruvate and the subsequent transfer of protons between pyruvate and biotin in the partial reaction catalyzed in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase.
    Biochemistry 03/2010; 49(15):3296-304. · 3.38 Impact Factor
  • Source
    Tonya N Zeczycki, Martin St Maurice, Paul V Attwood
    [Show abstract] [Hide abstract]
    ABSTRACT: This review aims to discuss the varied types of inhibitors of biotin-dependent carboxylases, with an emphasis on the inhibitors of pyruvate carboxylase. Some of these inhibitors are physiologically relevant, in that they provide ways of regulating the cellular activities of the enzymes e.g. aspartate and prohibitin inhibition of pyruvate carboxylase. Most of the inhibitors that will be discussed have been used to probe various aspects of the structure and function of these enzymes. They target particular parts of the structure e.g. avidin - biotin, FTP - ATP binding site, oxamate - pyruvate binding site, phosphonoacetate - binding site of the putative carboxyphosphate intermediate.
    The Open Enzyme Inhibition Journal 01/2010; 3:8-26.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO(2) to form oxaloacetate and complete the reaction.
    Biochemistry 05/2009; 48(20):4305-13. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ATP:Corrinoid adenosyltransferases (ACAs) catalyze the transfer of the adenosyl moiety from ATP to cob(I)alamin via a four-coordinate cob(II)alamin intermediate. At present, it is unknown how ACAs promote the formation of the four-coordinate corrinoid species needed for activity. The published high-resolution crystal structure of the ACA from Lactobacillus reuteri (LrPduO) in complex with ATP and cob(II)alamin shows that the environment around the alpha face of the corrin ring consists of bulky hydrophobic residues. To understand how these residues promote the generation of the four-coordinate cob(II)alamin, variants of the human-type ACA enzyme from L. reuteri (LrPduO) were kinetically and structurally characterized. These studies revealed that residue Phe112 is critical in the displacement of 5,6-dimethylbenzimidazole (DMB) from its coordination bond with the Co ion of the ring, resulting in the formation of the four-coordinate species. An F112A substitution resulted in a 80% drop in the catalytic efficiency of the enzyme. The explanation for this loss of activity was obtained from the crystal structure of the mutant protein, which showed cob(II)alamin bound in the active site with DMB coordinated to the cobalt ion. The crystal structure of an LrPduO(F112H) variant showed a DMB-off/His-on interaction between the corrinoid and the enzyme, whose catalytic efficiency was 4 orders of magnitude lower than that of the wild-type protein. The analysis of the kinetic parameters of LrPduO(F112H) suggests that the F112H substitution negatively impacts product release. Substitutions of other hydrophobic residues in the Cbl binding pocket did not result in significant defects in catalytic efficiency in vitro; however, none of the variant enzymes analyzed in this work supported AdoCbl biosynthesis in vivo.
    Biochemistry 03/2009; 48(14):3138-45. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PC (pyruvate carboxylase) is a biotin-containing enzyme that catalyses the HCO(3)(-)- and MgATP-dependent carboxylation of pyruvate to form oxaloacetate. This is a very important anaplerotic reaction, replenishing oxaloacetate withdrawn from the tricarboxylic acid cycle for various pivotal biochemical pathways. PC is therefore considered as an enzyme that is crucial for intermediary metabolism, controlling fuel partitioning toward gluconeogenesis or lipogenesis and in insulin secretion. The enzyme was discovered in 1959 and over the last decade there has been much progress in understanding its structure and function. PC from most organisms is a tetrameric protein that is allosterically regulated by acetyl-CoA and aspartate. High-resolution crystal structures of the holoenzyme with various ligands bound have recently been determined, and have revealed details of the binding sites and the relative positions of the biotin carboxylase, carboxyltransferase and biotin carboxyl carrier domains, and also a unique allosteric effector domain. In the presence of the allosteric effector, acetyl-CoA, the biotin moiety transfers the carboxy group between the biotin carboxylase domain active site on one polypeptide chain and the carboxyltransferase active site on the adjacent antiparallel polypeptide chain. In addition, the bona fide role of PC in the non-gluconeogenic tissues has been studied using a combination of classical biochemistry and genetic approaches. The first cloning of the promoter of the PC gene in mammals and subsequent transcriptional studies reveal some key cognate transcription factors regulating tissue-specific expression. The present review summarizes these advances and also offers some prospects in terms of future directions for the study of this important enzyme.
    Biochemical Journal 09/2008; 413(3):369-87. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP:cob(I)alamin adenosyltransferases (ACAs) catalyze the transfer of the 5'-deoxyadenosyl moiety from ATP to the upper axial ligand position of cobalamin in the synthesis of coenzyme B 12. For the ACA-catalyzed reaction to proceed, cob(II)alamin must be reduced to cob(I)alamin in the enzyme active site. This reduction is facilitated through the generation of a four-coordinate cob(II)alamin intermediate on the enzyme. We have determined the high-resolution crystal structure of a human-type ACA from Lactobacillus reuteri with a four-coordinate cob(II)alamin bound in the enzyme active site and with the product, adenosylcobalamin, partially occupied in the active site. The assembled structures represent snapshots of the steps in the ACA-catalyzed formation of the cobalt-carbon bond of coenzyme B 12. The structures define the corrinoid binding site and provide visual evidence for a base-off, four-coordinate cob(II)alamin intermediate. The complete structural description of ACA-mediated catalysis reveals the molecular features of four-coordinate cob(II)alamin stabilization and provides additional insights into the molecular basis for dysfunction in human patients suffering from methylmalonic aciduria.
    Biochemistry 06/2008; 47(21):5755-66. · 3.38 Impact Factor

Publication Stats

298 Citations
131.74 Total Impact Points

Institutions

  • 2010–2013
    • Marquette University
      • Department of Biological Sciences
      Milwaukee, WI, United States
  • 2012
    • Louisiana State University
      • Department of Biochemistry and Molecular Biology
      Baton Rouge, LA, United States
  • 2011–2012
    • University of Western Australia
      • School of Chemistry and Biochemistry
      Perth, Western Australia, Australia
  • 2007–2011
    • University of Wisconsin, Madison
      • Department of Biochemistry
      Mississippi, United States
  • 2008–2010
    • Mahidol University
      • Faculty of Science
      Bangkok, Bangkok, Thailand
  • 2000–2005
    • Dalhousie University
      • Department of Biochemistry and Molecular Biology
      Halifax, Nova Scotia, Canada