K M Gilmour

University of Ottawa, Ottawa, Ontario, Canada

Are you K M Gilmour?

Claim your profile

Publications (141)298.16 Total impact

  • J D Jeffrey, S J Cooke, K M Gilmour
    [Show abstract] [Hide abstract]
    ABSTRACT: Male smallmouth bass (Micropterus dolomieu) provide sole parental care until offspring reach independence, a period of several weeks. During the early parental care period when males are guarding fresh eggs (MG-FE), cortisol responsiveness is attenuated; the response is re-established when males reach the end of the parental care period and are guarding free-swimming fry (MG-FSF). It was hypothesized that attenuation of the cortisol response in male smallmouth bass during early parental care reflected modulation of hypothalamic-pituitary-interrenal (HPI) axis function. Male smallmouth bass were sampled at the beginning (MG-FE) and end of the parental care period (MG-FSF), before and/or 25 min after exposure to a standardized stressor consisting of 3 min of air exposure. Repeated sampling of stressed fish for analysis of plasma cortisol and adrenocorticotropic hormone (ACTH) levels was carried out. Males significantly elevated both plasma cortisol and ACTH levels when guarding free-swimming fry but not during early parental care. Control and stressed fish were terminally sampled for tissue mRNA abundance of preoptic area (POA) and hypothalamic corticotropin-releasing factor (CRF) as well as head kidney melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc). No significant differences in either hypothalamus CRF or head kidney P450scc mRNA abundance were found across parental care stages or in response to stress. However, POA CRF mRNA abundance and interrenal cell MC2R and StAR mRNA abundances failed to increase in response to stress in MG-FE. Thus, the attenuated cortisol response in males guarding fresh eggs may be explained by hypoactive HPI axis function in response to stress. The present is one of few studies, and the first teleost study, to address the mechanisms underlying resistance to stress during the reproductive/parental care period.
    General and Comparative Endocrinology 05/2014; · 2.82 Impact Factor
  • J.D. Jeffrey, S.J. Cooke, K.M. Gilmour
    [Show abstract] [Hide abstract]
    ABSTRACT: Male smallmouth bass (Micropterus dolomieu) provide sole parental care until offspring reach independence, a period of several weeks. During the early parental care period when males are guarding fresh eggs (MG-FE), cortisol responsiveness is attenuated; the response is re-established when males reach the end of the parental care period and are guarding free-swimming fry (MG-FSF). It was hypothesized that attenuation of the cortisol response in male smallmouth bass during early parental care reflected modulation of hypothalamic-pituitary-interrenal (HPI) axis function. Male smallmouth bass were sampled at the beginning (MG-FE) and end of the parental care period (MG-FSF), before and/or 25 min after exposure to a standardized stressor consisting of 3 min of air exposure. Repeated sampling of stressed fish for analysis of plasma cortisol and adrenocorticotropic hormone (ACTH) levels was carried out. Males significantly elevated both plasma cortisol and ACTH levels when guarding free-swimming fry but not during early parental care. Control and stressed fish were terminally sampled for tissue mRNA abundance of preoptic area (POA) and hypothalamic corticotropin-releasing factor (CRF) as well as head kidney melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc). No significant differences in either hypothalamus CRF or head kidney P450scc mRNA abundance were found across parental care stages or in response to stress. However, POA CRF mRNA abundance and interrenal cell MC2R and StAR mRNA abundances failed to increase in response to stress in MG-FE. Thus, the attenuated cortisol response in males guarding fresh eggs may be explained by hypoactive HPI axis function in response to stress. The present is one of few studies, and the first teleost study, to address the mechanisms underlying resistance to stress during the reproductive/parental care period.
    General and Comparative Endocrinology 01/2014; · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The energetic costs of action potential (AP) production constrain the evolution of neural codes and brain networks. Cellular-level estimates of AP-related costs are typically based on voltage-dependent Na(+) currents that drive active transport by the Na(+)/K(+) ATPase to maintain the Na(+) and K(+) ion concentration gradients necessary for AP production. However, these estimates of AP cost have not been verified at the organismal level. Electric signaling in the weakly electric fish Eigenmannia virescens requires that specialized cells in an electric organ generate APs with large Na(+) currents at high rates (200-600 Hz). We measured these currents using a voltage-clamp protocol and then estimated the energetic cost at the cellular level using standard methods. We then used this energy-intensive signaling behavior to measure changes in whole-animal energetics for small changes in electric discharge rate. At low rates, the whole-animal measure of AP cost was similar to our cellular-level estimates. However, AP cost increased nonlinearly with increasing firing rates. We show, with a biophysical model, that this nonlinearity can arise from the increasing cost of maintaining AP amplitude at high rates. Our results confirm that estimates of energetic costs based on Na(+) influx are appropriate for low baseline firing rates, but that extrapolating to high firing rates may underestimate true costs in cases in which AP amplitude does not decrease. Moreover, the trade-off between energetic cost and firing rate suggests an additional constraint on the evolution of high-frequency signaling in neuronal systems.
    Journal of Neuroscience 01/2014; 34(1):197-201. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent findings from iteroparous species suggest that glucocorticoid secretion following acute stress can mediate behavior and survival strategies, ultimately influencing fitness. However, these correlates of the stress response may not exist in semelparous animals given the inability to maximize fitness by delaying reproduction. We measured baseline and stress-induced cortisol concentrations in semelparous sockeye salmon (Oncorhynchus nerka) following exposure to an acute stressor at the mouth of the Fraser River in British Columbia. The homing fish were then radio-tagged and tracked throughout their in-river migration. Findings reveal that the stress response (i.e. change from baseline to stress-induced cortisol) was predictive of mortality; fish failing to leave the release site had a significantly greater stress response (mean ± SE = 1004.0 ± 75.3 ng/mL) compared to fish capable of successfully migrating beyond one of the most difficult areas of passage over 100 river kilometers upstream (mean ± SE = 780.7 ± 66.7 ng/mL). However, there were no associations between swimming behaviors, both immediately following release and to last point of detection, and the stress response. This study also introduced a unique method of tagging migrating salmon that allows for rapid capture and sampling and thus provides the first assessment of true baseline cortisol concentrations at river-entry for migrating Pacific salmon in the wild. Results show the stress response to be linked to survival in a semelparous species and therefore set the stage for further exploration into how the evolutionary theories underlying relationships between stress responsiveness and fitness may differ between semelparous and iteroparous species.
    General and Comparative Endocrinology 01/2014; · 2.82 Impact Factor
  • J D Jeffrey, M J Gollock, K M Gilmour
    [Show abstract] [Hide abstract]
    ABSTRACT: In rainbow trout (Oncorhynchus mykiss) of subordinate social status, circulating cortisol concentrations were elevated under resting conditions but the plasma cortisol and glucose responses to an acute stressor (confinement in a net) were attenuated relative to those of dominant trout. An in vitro head kidney preparation, and analysis of the expression of key genes in the stress axis prior to and following confinement in a net were then used to examine the mechanisms underlying suppression of the acute cortisol stress response in trout experiencing chronic social stress. With porcine adrenocorticotropic hormone (ACTH) as the secretagogue, ACTH-stimulated cortisol production was significantly lower for head kidney preparations from subordinate trout than for those from dominant trout. Dominant and subordinate fish did not, however, differ in the relative mRNA abundance of melanocortin-2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) or cytochrome P450 side chain cleavage enzyme (P450scc) within the head kidney, although the relative mRNA abundance of these genes was significantly higher in both dominant and subordinate fish than in sham trout (trout that did not experience social interactions but were otherwise treated identically to the dominant and subordinate fish). The relative mRNA abundance of all three genes was significantly higher in trout exposed to an acute net stressor than under control conditions. Upstream of cortisol production in the stress axis, plasma ACTH concentrations were not affected by social stress, nor was the relative mRNA abundance of the binding protein for corticotropin releasing factor (CRF-BP). The relative mRNA abundance of CRF in the pre-optic area of subordinate fish was significantly higher than that of dominant or sham fish 1 h after exposure to the stressor. Collectively, the results indicate that chronic social stress modulates cortisol production at the level of the interrenal cells, resulting in an attenuated cortisol response to an acute stressor.
    General and Comparative Endocrinology 11/2013; · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rainbow trout (Oncorhynchus mykiss) exposed to an acute heat shock (1h at 25°C after raising water temperature from 13°C to 25°C over 4h) mount a significant catecholamine response. The present study investigated the proximate mechanisms underlying catecholamine mobilization. Trout exposed to heat shock in vivo exhibited a significant reduction in arterial O2 tension, but arterial O2 concentration was not affected by heat shock, nor was catecholamine release during heat shock prevented by prior and concomitant exposure to hyperoxia (to prevent the fall in arterial O2 tension). Thus, catecholamine mobilization probably was not triggered by impaired blood O2 transport. Heat-shocked trout also exhibited an elevation of arterial CO2 tension coupled with a fall in arterial pH, but these factors are not expected to trigger catecholamine release. The changes in blood O2 and CO2 tension occurred despite a significant hyperventilatory response to heat shock. Future studies should investigate whether catecholamine mobilization during heat shock in rainbow trout is triggered by a specific effect of high temperature activating the sympathetic nervous system via a thermosensitive transient receptor potential channel.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 03/2013; · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circulating corticosteroids have been related to social status in a variety of species. However, our understanding of corticosteroid receptor expression and its relationship with sociality is still in its infancy. Knowledge of variation in receptor expression is critical to understand the physiological relevance of differences in circulating corticosteroid concentrations. In this study, we examined corticosteroid receptor gene expression in relation to dominance rank, sex, and social behaviour in the highly social cichlid fish, Neolamprologus pulcher. We examined the relative gene expression of the three known teleost corticosteroid receptors: glucocorticoid receptor 1 (GR1), glucocorticoid receptor 2 (GR2), and the mineralocorticoid receptor (MR) in liver and brain tissue of dominant and subordinate N. pulcher males and females. Phylogenetic analysis revealed the N. pulcher gene originally described as GR2, clustered with other teleost GR1 genes, while the originally-described N. pulcher GR1 gene clustered with the GR2 genes of other teleosts. Therefore we propose a change in the original nomenclature of the N. pulcher GRs: GR1 (formerly GR2) and GR2 (formerly GR1) and adopt this new nomenclature throughout this manuscript. Liver MR transcript levels were higher in males than females, and positively related to submissive behaviour. Liver GR2 (formerly GR1) transcript levels were also higher in males than females. Collectively, the results demonstrate sex differences in corticosteroid receptor abundance, and suggest tissue- and receptor-specific roles for corticosteroid receptors in mediating aspects of social behaviour.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 12/2012; · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental implants were used to investigate the effect of elevated cortisol (the primary stress hormone in teleost fish) on energetic and physiological condition prior to reproduction in male and female largemouth bass (Micropterus salmoides). Fish were wild-caught from lakes in Illinois, and held in experimental ponds for the duration of the study. Between 9 and 13 days after cortisol treatment, and immediately prior to the start of the reproductive period, treated and control animals were sampled. Females exhibited lower muscle lipid content, lower liver glycogen content, and higher hepatosomatic indices than males, regardless of treatment. Also, cortisol-treated females had higher hepatosomatic indices and lower final mass than control females, whereas males showed no differences between treatment groups. Finally, cortisol-treated females had higher gonadal cortisol concentrations than control females. In general, we found evidence of reduced energetic stores in female fish relative to male fish, likely due to timing differences in the allocation of resources during reproduction between males and females. Perhaps driven by the difference in energetic reserves, our data further suggest that females are more sensitive than males to elevated cortisol during the period immediately prior to reproduction. J. Exp. Zool. 9999A:000-000, 2012. © 2012 Wiley Periodicals, Inc.
    Journal of Experimental Zoology Part A Ecological Genetics and Physiology 11/2012; · 1.61 Impact Factor
  • K M Gilmour
    Journal of Experimental Biology 09/2012; 215(Pt 18):3135-6. · 3.24 Impact Factor
  • D W Carrie, K M Gilmour
    [Show abstract] [Hide abstract]
    ABSTRACT: In many teleost fish, catecholamines activate a red blood cell (RBC) Na(+)/H(+) exchanger (βNHE), raising RBC intracellular pH to protect haemoglobin-O(2) loading. The present study tested the hypothesis that RBC intracellular carbonic anhydrase (CA) contributes to this adrenergic response. The pH of rainbow trout (Oncorhynchus mykiss) blood was monitored continuously in vitro using blood flowing in a semi-closed loop or in vivo using an extracorporeal circulation. Addition or injection of isoproterenol activated the βNHE, causing blood pH to fall (in vitro ΔpH=-0.28±0.03 pH units, N=16; in vivo, -0.12±0.02 pH units, N=6). Both in vitro and in vivo, inhibition of RBC CA by acetazolamide significantly decreased the magnitude of the adrenergic response (in vitro, ΔpH=-0.22±0.02 pH units, N=16; in vivo, -0.02±0.01 pH units, N=6) as well as the rate of recovery of blood pH following the adrenergic response. These results support the hypothesis that RBC intracellular CA plays an important role in the RBC adrenergic response of rainbow trout, and fuel speculation that interspecific differences in RBC CA activity are associated with the magnitude of the RBC adrenergic response.
    Respiratory Physiology & Neurobiology 07/2012; 184(1):60-4. · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of chronic social stress on hepatic glycogen metabolism were examined in rainbow trout Oncorhynchus mykiss by comparing hepatocyte glucose production, liver glycogen phosphorylase (GP) activity, and liver β-adrenergic receptors in dominant, subordinate, control, fasted, and cortisol-treated fish. Hepatocyte glucose production in subordinate fish was approximately half that of dominant fish, reflecting hepatocyte glycogen stores in subordinate trout that were just 16% of those in dominant fish. Fasting and/or chronic elevation of cortisol likely contributed to these differences based on similarities among subordinate, fasted, and cortisol-treated fish. However, calculation of the "glycogen gap"--the difference between glycogen stores used and glucose produced--suggested an enhanced gluconeogenic potential in subordinate fish that was not present in fasted or cortisol-treated trout. Subordinate, fasted, and cortisol-treated trout also exhibited similar GP activities (both total activity and that of the active or a form), and these activities were in all cases significantly lower than those in control trout, perhaps reflecting an attempt to protect liver glycogen stores or a modified capacity to activate GP. Dominant trout exhibited the lowest GP activities (20%-24% of the values in control trout). Low GP activities, presumably in conjunction with incoming energy from feeding, allowed dominant fish to achieve the highest liver glycogen concentrations (double the value in control trout). Liver membrane β-adrenoceptor numbers (assessed as the number of (3)H-CGP binding sites) were significantly lower in subordinate than in dominant trout, although this difference did not translate into attenuated adrenergic responsiveness in hepatocyte glucose production in vitro. Transcriptional regulation, likely as a result of fasting, was indicated by significantly lower β(2)-adrenoceptor relative mRNA levels in subordinate and fasted trout. Collectively, the data indicate that social status shapes liver metabolism and in particular glycogen metabolism, favoring accumulation of glycogen reserves from incoming energy in dominant fish and reliance on onboard fuels in subordinate fish.
    Physiological and Biochemical Zoology 07/2012; 85(4):309-20. · 2.46 Impact Factor
  • Kathleen M Gilmour
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbonic anhydrase (CA) is a zinc metalloenzyme that catalyzes the reversible reactions of carbon dioxide and water: CO(2)+H(2)O↔H(+)+HCO(3)(-). It has long been recognized that CA is abundant in the fish gill, with attention focused on the role of CA in catalyzing the hydration of CO(2) to provide H(+) and HCO(3)(-) for the branchial ion transport processes that underlie systemic ionic and acid-base regulation. Recent work has explored the diversity of CA isoforms in the fish gill. By linking these isoforms to different cell types in the gill, and by exploiting the diversity of fish species available for study, this work is increasing our understanding of the many roles that CA plays in the fish gill. In particular, recent work has revealed that fish utilize more than one model of CO(2) excretion, that to understand the role of CA and the gill in ionic regulation and acid-base balance means characterizing the transporter and CA complement of individual cell types, and that CA plays roles in branchial sensory mechanisms. The goal of this brief review is to summarize these new developments, while at the same time highlighting key areas in which further research is needed.
    Respiratory Physiology & Neurobiology 06/2012; · 2.05 Impact Factor
  • M Danielle McDonald, Kathleen M Gilmour, Patrick J Walsh
    [Show abstract] [Hide abstract]
    ABSTRACT: Not long ago, urea was believed to freely diffuse across plasma membranes. The discovery of specialized proteins to facilitate the movement of urea across the fish gill, similar to those found in mammalian kidney, was exciting, and at the same time, perplexing; especially considering the fact that, aside from elasmobranchs, most fish do not produce urea as their primary nitrogenous waste. Increasingly, it has become apparent that many fish do indeed produce at least a small amount of urea through various processes and continued work on branchial urea transporters in teleost and elasmobranch fishes has led to recent advances in the regulation of these mechanisms. The following review outlines the substantial progress that has been made towards understanding environmental and developmental impacts on fish gill urea transport. This review also outlines the work that has been done regarding endocrine and neural control of urea excretion, most of which has been collected from only a handful of teleost fish. It is evident that more research is needed to establish the endocrine and neural control of urea excretion in fish, including fish representative of more ancient lineages (hagfish and lamprey), and elasmobranch fish.
    Respiratory Physiology & Neurobiology 06/2012; · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wild fish are frequently exposed to multiple stressors, but the influence of previous or ongoing stress on an animal's subsequent response is poorly understood. Using wild-caught bluegill sunfish (Lepomis macrochirus) as a model, we used exogenous hormone implants to experimentally raise circulating cortisol in a group of fish for ∼10 days. We also maintained sham-treated and control groups of fish. We subjected all animals to a secondary stressor in the form of either a heat challenge or fasting challenge. We compared survival, body condition, and plasma-borne indicators of physiological status among cortisol-treated, sham-treated, and control groups following the secondary stressor. In order to compare short- and long-term effects of cortisol treatment, we initiated the secondary stressor either 4 or 30 days following initial cortisol treatment. Cortisol-treated fish succumbed to the fasting challenge sooner than sham-treated and control fish at both 4 and 30 days. Interestingly, cortisol-treated fish lost equilibrium sooner than sham-treated and control fish during the heat challenge when conducted at 30 days, but not at 4 days. These results demonstrate that multiple simultaneous stressors have cumulative effects on bluegill sunfish. Furthermore, these results demonstrate that supraphysiological cortisol doses alter the long-term responses of bluegill sunfish to additional challenges, even after apparent recovery. Such cumulative and long-term effects may be an important factor in mediating the response of wild animals to natural and anthropogenic stressors, and should be considered in ecological studies. J. Exp. Zool.317:321–332, 2012. © 2012 Wiley Periodicals, Inc
    Journal of Experimental Zoology Part A Ecological Genetics and Physiology 06/2012; 317(5):321-332. · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gill remodeling in goldfish (Carassius auratus) is accomplished by the appearance or retraction of a mass of cells (termed the interlamellar cell mass or ILCM) between adjacent lamellae. Given the presumed effects of gill remodeling on diffusing capacity, the goals of the current study were (1) to determine the consequences of increased aerobic O(2) demand (swimming) on gill remodelling and (2) to assess the consequences of the presence or absence of the ILCM on aerobic swimming capacity. Fish acclimated to 7 °C exhibited a marked increase in the ILCM which occupied, on average, 70.0 ± 4.1 % of the total interlamellar channel area in comparison to an average ILCM area of only 28.3 ± 0.9 % in fish acclimated to 25 °C. Incrementally increasing swimming velocity in fish at 7 °C to achieve a maximum aerobic swimming speed (U (CRIT)) within approximately 3 h resulted in a marked loss of the ILCM area to 44.8 ± 3.5 %. Fish acclimated to 7 °C were subjected to 35 min swimming trials at 30, 60 or 80 % U (CRIT) revealing that significant loss of the ILCM occurred at swimming speeds exceeding 60 % U (CRIT). Prior exposure of cold water-acclimated fish to hypoxia to induce shedding of the ILCM did not affect swimming performance when assessed under normoxic conditions (control fish U (CRIT) = 2.34 ± 0.30 body lengths s(-1); previously hypoxic fish U (CRIT) = 2.99 ± 0.14 body lengths s(-1)) or the capacity to raise rates of O(2) consumption with increasing swimming speeds. Because shedding of ILCM during U (CRIT) trials complicated the interpretation of experiments designed to evaluate the impact of the ILCM on swimming performance, additional experiments using a more rapid 'ramp' protocol were performed to generate swimming scores. Neither prior hypoxia exposure nor a previous swim to U (CRIT) (both protocols are known to cause loss of the ILCM) affected swimming scores (the total distance swum during ramp U (CRIT) trials). However, partitioning all data based on the extent of ILCM coverage upon cessation of the swimming trial revealed that fish with less than 40 % ILCM coverage exhibited a significantly greater swimming score (539 ± 86 m) than fish with greater than 50 % ILCM coverage (285 ± 70 m). Thus, while loss of the ILCM at swimming speeds exceeding 60 % U (CRIT) confounds the interpretation of experiments designed to assess the impact of the ILCM on swimming performance, we suggest that the shedding of the ILCM, in itself, coupled with improved swimming scores in fish exhibiting low ILCM coverage (<40 %), provide evidence that the ILCM in goldfish acclimated to cold water (7 °C) is indeed an impediment to aerobic swimming capacity.
    Journal of Comparative Physiology B 05/2012; 182(7):935-45. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Life-history theory predicts that stress responses should be muted to maximize reproductive fitness. Yet, the relationship between stress and reproduction for semelparous salmon is unusual because successfully spawning individuals have elevated plasma cortisol levels. To tease apart the effects of high baseline cortisol levels and stress-induced elevation of cortisol titers, we determined how varying degrees of cortisol elevation (i.e., acute and chronic) affected behavior, reproductive physiology, and reproductive success of adult female pink salmon (Oncorhynchus gorbuscha) relative to different states of ovulation (i.e., ripe and unripe). Exhaustive exercise and air exposure were applied as acute stressors to manipulate plasma cortisol in salmon either confined to a behavioral arena or free-swimming in a spawning channel. Cortisol (eliciting a cortisol elevation to levels similar to those in post-spawn female salmon) and metyrapone (a corticosteroid synthesis inhibitor) implants were also used to chemically manipulate plasma cortisol. Cortisol implants elevated plasma cortisol, and impaired reproductive success; cortisol-treated fish released fewer eggs and died sooner than fish in other treatment groups. In contrast, acute stressors elevated plasma cortisol and the metyrapone implant suppressed plasma cortisol, but neither treatment significantly altered reproductive success, behavior, or physiology. Our results suggest that acute stressors do not influence behavior or reproductive outcome when experienced upon arrival at spawning grounds. Thus, certain critical aspects of salmonid reproduction can become refractory to various stressful conditions on spawning grounds. However, there is a limit to the ability of these fish to tolerate elevated cortisol levels as revealed by experimental elevation of cortisol.
    Hormones and Behavior 05/2012; 62(1):67-76. · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a long-term study population of wild smallmouth bass Micropterus dolomieu in a connected river-lake system, we investigated whether circulating glucocorticoid (cortisol) and androgen (testosterone) concentrations are influenced by reproductive investment and nesting environment in fish providing nest-guarding paternal care. For all individuals, we collected measures of reproductive history and the value of current parental care. We assessed nest environment and monitored individuals to quantify seasonal reproductive success. Finally, we measured circulating cortisol concentrations following a standardized stressor and circulating testosterone concentrations. Using general linear models, we found that poststress circulating cortisol concentrations were positively related to water temperature and were higher in fish nesting in the river than in the lake. Circulating testosterone concentrations were negatively related to water temperature and were higher in reproductively experienced fish. When considering the factors that influence reproductive success, we found that only parental size was positively related to current nest success. In summary, the results demonstrate that nesting environment is correlated with parental stress responses during parental care, while reproductive history and nesting environment are correlated with circulating androgen concentrations. Collectively, these results offer insight into the roles of both glucocorticoid and androgen steroid hormones during parental care in teleost fish.
    Physiological and Biochemical Zoology 05/2012; 85(3):209-18. · 2.46 Impact Factor
  • B Mussa, K M Gilmour
    [Show abstract] [Hide abstract]
    ABSTRACT: Socially subordinate rainbow trout (Oncorhynchus mykiss) experience chronic stress that impacts upon a variety of physiological functions, including Na(+) regulation. Owing to the tight coupling between Na(+) and Cl(-) uptake and, respectively, H(+) and HCO(3)(-) loss at the gill, ionoregulatory changes associated with social status may affect acid-base regulation. The present study assessed the responses of dominant, subordinate and control trout to hypercapnia (1% CO(2)) to test this hypothesis. Social status appeared to impact net acid excretion (J(net)H(+)) as subordinate individuals failed to increase net acid flux in response to hypercapnia. However, blood acid-base status was found to be unaffected by social status before or during hypercapnic exposure, indicating that subordinate fish were as effective as dominant or control trout in achieving compensation for the acid-base disturbance induced by hypercapnic exposure. Compensation in all groups involved decreasing Cl(-) uptake in response to hypercapnia. The branchial activities of both Na(+),K(+)-ATPase (NKA) and V-type H(+)-ATPase were affected by social interactions and/or exposure to hypercapnia. Branchial NKA activity was higher but V-ATPase activity was lower in control fish than in dominant or subordinate trout. In addition, control and subordinate but not dominant trout exposed to 24h of hypercapnia exhibited significantly higher branchial V-ATPase activity than fish maintained in normocapnia. Collectively, the data suggest that subordinate trout are able to regulate blood pH during a respiratory acidosis.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 02/2012; 162(3):177-84. · 2.20 Impact Factor
  • J B Thomas, K M Gilmour
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, chronic behavioural stress resulting from low social status affected the physiological responses of rainbow trout (Oncorhynchus mykiss) to a subsequent acute stressor, exposure to hypoxia. Rainbow trout were confined in fork-length matched pairs for 48-72 h, and social rank was assigned based on behaviour. Dominant and subordinate fish were then exposed individually to graded hypoxia (final water PO(2), PwO(2) = 40 Torr). Catecholamine mobilization profiles differed between dominant and subordinate fish. Whereas dominant fish exhibited generally low circulating catecholamine levels until a distinct threshold for release was reached (PwO(2) = 51.5 Torr corresponding to arterial PO(2), PaO(2) = 24.1 Torr), plasma catecholamine concentrations in subordinate fish were more variable and identification of a distinct threshold for release was problematic. Among fish that mobilized catecholamines (i.e. circulating catecholamines rose above the 95% confidence interval around the baseline value), however, the circulating levels achieved in subordinate fish were significantly higher (459.9 ± 142.2 nmol L(-1), mean ± SEM, N = 12) than those in dominant fish (130.9 ± 37.9 nmol L(-1), N = 12). The differences in catecholamine mobilization occurred despite similar P(50) values in dominant (22.0 ± 1.5 Torr, N = 6) and subordinate (22.1 ± 2.2 Torr, N = 8) fish, and higher PaO(2) values in subordinate fish under severely hypoxic conditions (i.e. PwO(2) < 60 Torr). The higher PaO(2) values of subordinate fish likely reflected the greater ventilatory rates and amplitudes exhibited by these fish during severe hypoxia. At the most severe level of hypoxia, subordinate fish were unable to defend arterial blood O(2) content, which fell to approximately half (0.60 ± 0.13 mL O(2) g(-1) haemoglobin, N = 9) that of dominant fish (1.08 ± 0.09 mL O(2) g(-1) haemoglobin, N = 9). Collectively, these data indicate that chronic social stress impacts the ability of trout to respond to the additional, acute stress of hypoxia.
    Journal of Comparative Physiology B 02/2012; 182(5):651-62. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Juvenile rainbow trout (Oncorhynchus mykiss) form stable dominance hierarchies when confined in pairs. These hierarchies are driven by aggressive competition over limited resources and result in one fish becoming dominant over the other. An important indicator of low social status is sustained elevation of circulating cortisol levels as a result of chronic activation of the hypothalamic-pituitary-interrenal (HPI) axis. In the present study it was hypothesized that social status modulates the expression of key proteins involved in the functioning of the HPI axis. Cortisol treatment and fasting were used to assess whether these characteristics seen in subordinate fish also affected HPI axis function. Social status modulated plasma adrenocorticotropic hormone (ACTH) levels, cortisol synthesis, and liver glucocorticoid receptor (GR) expression. Plasma ACTH levels were lower by approximately 2-fold in subordinate and cortisol-treated fish, consistent with a negative feedback role for cortisol in modulating HPI axis function. Although cortisol-treated fish exhibited differences in corticotropin-releasing factor (CRF) and CRF-binding protein (CRF-BP) mRNA relative abundances in the preoptic area and telencephalon, respectively, no effect of social status on CRF or CRF-BP was detected. Head kidney melanocortin 2 receptor (MC2R) mRNA relative levels were unaffected by social status, while mRNA relative abundances of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage (P450scc) enzyme were elevated in dominant fish. Liver GR2 mRNA and total GR protein levels in subordinate fish were lower than control values by approximately 2-fold. In conclusion, social status modulated the functioning of the HPI axis in rainbow trout. Our results suggest altered cortisol dynamics and reduced target tissue response to this steroid in subordinate fish, while the higher transcript levels for steroid biosynthesis in dominant fish leads us to propose an adaptive role for responding to subsequent stressors.
    General and Comparative Endocrinology 02/2012; 176(2):201-10. · 2.82 Impact Factor

Publication Stats

2k Citations
298.16 Total Impact Points

Institutions

  • 1993–2014
    • University of Ottawa
      • • Department of Biology
      • • Centre for Advanced Research in Environmental Genomics (CAREG)
      Ottawa, Ontario, Canada
  • 2009–2013
    • Mount Allison University
      • Department of Biology
      Sackville, New Brunswick, Canada
  • 2002–2012
    • McMaster University
      • • Department of Psychology, Neuroscience & Behaviour
      • • Department of Biology
      Hamilton, Ontario, Canada
  • 2001–2012
    • Carleton University
      • Department of Biology
      Ottawa, Ontario, Canada
  • 1998–2012
    • University of Miami
      • • Rosenstiel School of Marine and Atmospheric Science
      • • Division of Marine Biology & Fisheries
      Coral Gables, FL, United States
    • Uppsala University
      Uppsala, Uppsala, Sweden
  • 2005
    • Universidade Federal de São Carlos
      • Departamento de Ciências Fisiológicas (DCF)
      São Carlos, Estado de Sao Paulo, Brazil
    • Queen's University
      • Department of Biology
      Kingston, Ontario, Canada
  • 1996–2001
    • University of Glasgow
      Glasgow, Scotland, United Kingdom
    • Aarhus University
      • Department of Zoophysiology
      Aars, Region North Jutland, Denmark