Ulrich E Schaible

Research Center Borstel, Borstel, Lower Saxony, Germany

Are you Ulrich E Schaible?

Claim your profile

Publications (84)500.75 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF) conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF) facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH) at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models.
    PLoS ONE 12/2014; 9(12):e113466. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reliable measurement of non-transferrin-bound iron in serum has proved to be difficult and generally time consuming. We have sought a simple and fast method for such a determination. We adopted a fluorescence assay and designed a fluorescent dye with a chelating agent attached to sense iron. To avoid autofluorescence from serum samples, the iron probes were linked to beads and the autofluorescence could be separated and excluded from the measurement by flow cytometry due to the size difference between beads and serum proteins. Fluorescent beads containing both fluorescent and chelating moieties have been synthesised. The nature of the chelating function has been systematically investigated using four different chelators---bidentate hydroxypyranone, bidentate hydroxypyridinone, hexadentate hydroxypyranone and hexadentate hydroxypyridinone, each with different iron affinity constants. Competition studies demonstrate that the hexadentate hydroxypyridinone-based beads are capable of scavenging most of low molecular weight and albumin-bound iron but negligible amounts of iron from transferrin and ferritin. Serum samples from 30 patients with different types of disease and normal volunteers were measured. The concentrations of non-transferrin-bound iron fall in the range of -0.41 to +6.5 µM. The data have been compared with those obtained from the traditional "NTA" method.
    The Biochemical journal. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipases catalyze the cleavage of membrane phospholipids into smaller bioactive molecules. The lysosomal phospholipase A2 (LPLA2) is specifically expressed in macrophages. LPLA2 gene deletion in mice causes lysosomal phospholipid accumulation in tissue macrophages leading to phospholipidosis. This phenotype becomes most prominent in alveolar macrophages where LPLA2 contributes to surfactant phospholipid degradation. High expression of LPLA2 in alveolar macrophages prompted us to investigate its role in host immunity against the respiratory pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis. Here we report that adaptive immune responses to M. tuberculosis were impaired in LPLA2 deficient mice. Upon aerosol infection with M. tuberculosis, LPLA2 deficient mice showed enhanced mycobacterial counts but less lung immunopathology and pulmonary inflammatory responses. Compromised T-cell priming in the lymph nodes was associated with impaired pulmonary T-cell recruitment and activation. Together with reduced Th1 type cytokine production these results indicate that LPLA2 is indispensable for the induction of adaptive T-cell immunity to M. tuberculosis. Taken together, we identified an unexpected and novel function of a lysosomal phospholipid-degrading enzyme.This article is protected by copyright. All rights reserved
    European Journal of Immunology 05/2014; · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages and polymorphonuclear neutrophils are professional phagocytes essential in the initial host response against intracellular pathogens such as Mycobacterium tuberculosis. Phagocytosis is the first step in phagocyte-pathogen interaction, where the pathogen is engulfed into a membrane-enclosed compartment termed a phagosome. Subsequent effector functions of phagocytes result in killing and degradation of the pathogen by promoting phagosome maturation, and, terminally, phago-lysosome fusion. Intracellular pathogenic microbes use various strategies to avoid detection and elimination by phagocytes, including induction of apoptosis to escape host cells, thereby generating apoptotic blebs as shuttles to other cells for pathogens and antigens thereof. Hence, phagosomes represent compartments where host and pathogen become quite intimate, and apoptotic blebs are carrier bags of the pathogen's legacy. In order to investigate the molecular mechanisms underlying these interactions, both phagosomes and apoptotic blebs are required as purified subcellular fractions for subsequent analysis of their biochemical properties. Here, we describe a lipid-based procedure to magnetically label surfaces of either pathogenic mycobacteria or apoptotic blebs for purification by a strong magnetic field in a novel free-flow system. Curr. Protoc. Immunol. 105:14.36.1-14.36.26. © 2014 by John Wiley & Sons, Inc.
    Current protocols in immunology / edited by John E. Coligan ... [et al.] 01/2014; 105:14.36.1-14.36.26.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
    Journal of Visualized Experiments 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic mycobacteria survive in phagocytic host cells primarily as a result of their ability to prevent fusion of their vacuole with lysosomes, thereby avoiding a bactericidal environment. The molecular mechanisms to establish and maintain this replication compartment are not well understood. By combining molecular and microscopical approaches we show here that after phagocytosis the actin nucleation-promoting factor WASH associates and generates F-actin on the mycobacterial vacuole. Disruption of WASH or depolymerization of F-actin leads to the accumulation of the proton-pumping V-ATPase around the mycobacterial vacuole, its acidification and reduces the viability of intracellular mycobacteria. This effect is observed for M. marinum in the model phagocyte Dictyostelium but also for M. marinum and M. tuberculosis in mammalian phagocytes. This demonstrates an evolutionarily conserved mechanism by which pathogenic mycobacteria subvert the actin-polymerization activity of WASH to prevent phagosome acidification and maturation, as a prerequisite to generate and maintain a replicative niche.
    Cellular Microbiology 09/2013; · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial vectors have been proposed as novel vaccine strategies to induce strong cellular immunity. Attenuated strains of Brucella abortus comprise promising vector candidates since they have the potential to induce strong CD4(+) and CD8(+) T-cell mediated immune responses in the absence of excessive inflammation as observed with other Gram-negative bacteria. However, some Brucella strains interfere with the maturation of dendritic cells (DCs), which is essential for antigen-specific T-cell priming. In the present study, we investigated the interaction of human monocyte-derived DCs with the smooth attenuated B. abortus strain (S) 19, which has previously been employed successfully to vaccinate cattle. We first looked into the potential of S19 to hamper the cytokine-induced maturation of DCs; however, infected cells expressed CD25, CD40, CD80, and CD86 to a comparable extent as uninfected, cytokine-matured DCs. Furthermore, S19 activated DCs in the absence of exogeneous stimuli, enhanced the expression of HLA-ABC and HLA-DR, and was able to persist intracellularly without causing cytotoxicity. Thus, DCs provide a cellular niche for persisting brucellae in vivo as a permanent source of antigen. S19-infected DCs produced IL-12/23p40, IL-12p70, and IL-10, but not IL-23. While heat-killed bacteria also activated DCs, soluble mediators were not involved in S19-induced activation of human DCs. HEK 293 transfectants revealed cellular activation by S19 primarily through engagement of Toll-like receptor (TLR)2. Thus, as an immunological prerequisite for vaccine efficacy, B. abortus S19 potently infects and potently activates (most likely via TLR2) human DCs to produce Th1-promoting cytokines.
    PLoS ONE 06/2013; 8(6):e65934. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: In vivo experimentation is costly and time-consuming, and presents a major bottleneck in anti-tuberculosis drug development. Conventional methods rely on the enumeration of bacterial colonies, and it can take up to 4 weeks for Mycobacterium tuberculosis to grow on agar plates. Light produced by recombinant bacteria expressing luciferase enzymes can be used as a marker of bacterial load, and disease progression can be easily followed non-invasively in live animals by using the appropriate imaging equipment. The objective of this work was to develop a bioluminescence-based mouse model of tuberculosis to assess antibiotic efficacy against M. tuberculosis in vivo. METHODS: We used an M. tuberculosis strain carrying a red-shifted derivative of the firefly luciferase gene (FFlucRT) to infect mice, and monitored disease progression in living animals by bioluminescence imaging before and after treatment with the frontline anti-tuberculosis drug isoniazid. The resulting images were analysed and the bioluminescence was correlated with bacterial counts. RESULTS: Using bioluminescence imaging we detected as few as 1.7 × 10(3) and 7.5 × 10(4) reporter bacteria ex vivo and in vivo, respectively, in the lungs of mice. A good correlation was found between bioluminescence and bacterial load in both cases. Furthermore, a marked reduction in luminescence was observed in living mice given isoniazid treatment. CONCLUSIONS: We have shown that an improved bioluminescent strain of M. tuberculosis can be visualized by non-invasive imaging in live mice during an acute, progressive infection and that this technique can be used to rapidly visualize and quantify the effect of antibiotic treatment. We believe that the model presented here will be of great benefit in early drug discovery as an easy and rapid way to identify active compounds in vivo.
    Journal of Antimicrobial Chemotherapy 04/2013; · 5.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of the IL-23-IL-17A pathway to resistance against extracellular bacterial infections is well established, whereas its role in immunity to intracellular pathogens is much less clear. To analyze the contribution of the IL-23-IL-17A-axis to resistance against Trypanosoma cruzi infection, we infected IL-23p19(-/-) mice and IL-17A(-/-) mice with T. cruzi. Both mouse strains were susceptible to T. cruzi infection despite strong Th1 immune responses. In vitro experiments revealed that IL-17A, but not IL-23, directly stimulates macrophages to internalize T. cruzi parasites by phagocytosis, which is in contrast to the active invasion process normally used by T. cruzi. In contrast to the active entry of parasites into macrophages, the IL-17A-driven phagocytosis prolonged residency of parasites in the endosomal/lysosomal compartment of the macrophage, which subsequently led to eradication of parasites. This IL-17A-dependent mechanism represents a novel function of IL-17A trapping pathogens in endosomal/lysosomal compartments and enhancing exposure time to antimicrobial effectors of the macrophage.
    Immunobiology 10/2012; · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human populations are rarely exposed to one pathogen alone. Particularly in high incidence regions such as sub-Saharan Africa, concurrent infections with more than one pathogen represent a widely underappreciated public health problem. Two of the world's most notorious killers, malaria and tuberculosis, are co-endemic in impoverished populations in the tropics. However, interactions between both infections in a co-infected individual have not been studied in detail. Both pathogens have a major impact on the lung as the prime target organ for aerogenic Mycobacterium tuberculosis and the site for one of the main complications in severe malaria, malaria-associated acute respiratory distress syndrome (MA-ARDS). In order to study the ramifications caused by both infections within the same host we established an experimental mouse model of co-infection between Mycobacterium tuberculosis and Plasmodium berghei NK65, a recently described model for MA-ARDS. Our study provides evidence that malaria-induced immune responses impair host resistance to Mycobacterium tuberculosis. Using the natural routes of infection, we observed that co-infection exacerbated chronic tuberculosis while rendering mice less refractory to Plasmodium. Co-infected animals presented with enhanced inflammatory immune responses as reflected by exacerbated leukocyte infiltrates, tissue pathology and hypercytokinemia accompanied by altered T-cell responses. Our results - demonstrating striking changes in the immune regulation by co-infection with Plasmodium and Mycobacterium - are highly relevant for the medical management of both infections in humans.
    PLoS ONE 10/2012; 7(10):e48110. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild type bacteria. Coating of non-pathogenic E. coli with purified wild type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic. Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi.
    Cellular Microbiology 10/2012; · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current method for testing new drugs against tuberculosis in vivo is the enumeration of bacteria in organs by cfu assay. Owing to the slow growth rate of Mycobacterium tuberculosis (Mtb), these assays can take months to complete. Our aim was to develop a more efficient, fluorescence-based imaging assay to test new antibiotics in a mouse model using Mtb reporter strains. A commercial IVIS Kinetic® system and a custom-built laser scanning system with fluorescence molecular tomography (FMT) capability were used to detect fluorescent Mtb in living mice and lungs ex vivo. The resulting images were analysed and the fluorescence was correlated with data from cfu assays. We have shown that fluorescent Mtb can be visualized in the lungs of living mice at a detection limit of ∼8 × 10⁷ cfu/lung, whilst in lungs ex vivo a detection limit of ∼2 × 10⁵ cfu/lung was found. These numbers were comparable between the two imaging systems. Ex vivo lung fluorescence correlated to numbers of bacteria in tissue, and the effect of treatment of mice with the antibiotic moxifloxacin could be visualized and quantified after only 9 days through fluorescence measurements, and was confirmed by cfu assays. We have developed a new and efficient method for anti-tuberculosis drug testing in vivo, based on fluorescent Mtb reporter strains. Using this method instead of, or together with, cfu assays will reduce the time required to assess the preclinical efficacy of new drugs in animal models and enhance the progress of these candidates into clinical trials against human tuberculosis.
    Journal of Antimicrobial Chemotherapy 05/2012; 67(8):1948-60. · 5.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neutrophils enter sites of infection, where they can eliminate pathogenic bacteria in an oxidative manner. Despite their predominance in active tuberculosis lesions, the function of neutrophils in this important human infection is still highly controversial. We observed that virulent Mycobacterium tuberculosis survived inside human neutrophils despite prompt activation of these defence cells' microbicidal effectors. Survival of M. tuberculosis was accompanied by necrotic cell death of infected neutrophils. Necrotic cell death entirely depended on radical oxygen species production since chronic granulomatous disease neutrophils were protected from M. tuberculosis-triggered necrosis. More, importantly, the M. tuberculosis ΔRD1 mutant failed to induce neutrophil necrosis rendering this strain susceptible to radical oxygen species-mediated killing. We conclude that this virulence function is instrumental for M. tuberculosis to escape killing by neutrophils and contributes to pathogenesis in tuberculosis.
    Cellular Microbiology 03/2012; 14(7):1109-21. · 4.82 Impact Factor
  • Source
    Stefan Ehlers, Ulrich E Schaible
    [Show abstract] [Hide abstract]
    ABSTRACT: A granuloma is defined as an inflammatory mononuclear cell infiltrate that, while capable of limiting growth of Mycobacterium tuberculosis, also provides a survival niche from which the bacteria may disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune response elements and the pathogen. In the granuloma, M. tuberculosis switches to a non-replicating but energy-generating life style whose detailed molecular characterization can identify novel targets for chemotherapy. To secure transmission to a new host, M. tuberculosis has evolved to drive T cell immunity to the point that necrotizing granulomas leak into bronchial cavities to facilitate expectoration of bacilli. From an evolutionary perspective it is therefore questionable whether vaccination and immunity enhancing strategies that merely mimic the natural immune response directed against M. tuberculosis infection can overcome pulmonary tuberculosis in the adult population. Juxtaposition of molecular pathology and immunology with microbial physiology and the use of novel imaging approaches afford an integrative view of the granuloma's contribution to the life cycle of M. tuberculosis. This review revisits the different input of innate and adaptive immunity in granuloma biogenesis, with a focus on the co-evolutionary forces that redirect immune responses also to the benefit of the pathogen, i.e., its survival, propagation, and transmission.
    Frontiers in Immunology 01/2012; 3:411.
  • Source
    Susanne Herbst, Ulrich E Schaible, Bianca E Schneider
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While the importance about NO for the control of mycobacterial infection in murine macrophages is well documented, the underlying mechanism has not been revealed yet. In this study we show that IFN-γ induced apoptosis in mycobacteria-infected macrophages, which was strictly dependent on NO. Subsequently, NO-mediated apoptosis resulted in the killing of intracellular mycobacteria independent of autophagy. In fact, killing of mycobacteria was susceptible to the autophagy inhibitor 3-methyladenine (3-MA). However, 3-MA also suppressed NO production, which is an important off-target effect to be considered in autophagy studies using 3-MA. Inhibition of caspase 3/7 activation, as well as NO production, abolished apoptosis and elimination of mycobacteria by IFN-γ activated macrophages. In line with the finding that drug-induced apoptosis kills intracellular mycobacteria in the absence of NO, we identified NO-mediated apoptosis as a new defense mechanism of activated macrophages against M. tuberculosis.
    PLoS ONE 01/2011; 6(5):e19105. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the synthesis and characterization of a fluorescent iron chelator (4), shown to be effective in inhibiting the growth of Mycobacterium avium in macrophages, together with the synthesis and characterization of two unsuccessful analogues selected to facilitate identification of the molecular properties responsible for the antimicrobial activity. Partition of the chelators in liposomes was investigated and the compounds were assessed with respect to uptake by macrophages, responsiveness to iron overload/iron deprivation and intracellular distribution by flow cytometry and confocal microscopy. The synthesis of the hexadentate chelators is based on a tetrahedral structure to which three bidentate 3-hydroxy-4-pyridinone chelating units are linked via amide bonds. The structure is synthetically versatile, allowing further addition of functional groups such as fluorophores. Here, we analyse the non-functionalized hexadentate unit (3) and the corresponding rhodamine B (4) and fluorescein (5) labelled chelators. The iron(III) stability constant was determined for 3 and the values log beta = 34.4 and pFe(3+) = 29.8 indicate an affinity for iron of the same order of magnitude as that of mycobacteria siderophores. Fluorescence properties in the presence of liposomes show that 4 strongly interacts with the lipid phase, whereas 5 does not. Such different behaviour may explain their distinct intracellular localization as revealed by confocal microscopy. The flow cytometry and confocal microscopy studies indicate that 4 is readily engulfed by macrophages and targeted to cytosol and vesicles of the endolysosomal continuum, whereas 5 is differentially distributed and only partially colocalizes with 4 after prolonged incubation. Differential distribution of the compounds is likely to account for their different efficacy against mycobacteria.
    European Journal of Biochemistry 04/2010; 15(6):861-77. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescent reporter proteins have proven useful for imaging techniques in many organisms. We constructed optimized expression systems for several fluorescent proteins from the far-red region of the spectrum and analyzed their utility in several mycobacterial species. Plasmids expressing variants of the Discosoma Red fluorescent protein (DsRed) from the Mycobacterium bovis hsp60 promoter were unstable; in contrast expression from the Mycobacterium smegmatis rpsA promoter was stable. In Mycobacterium tuberculosis expression of several of the far-red reporters was readily visualised by eye and three reporters (mCherry, tdTomato, and Turbo-635) fluoresced at a high intensity. Strains expressing mCherry showed no fitness defects in vitro or in macrophages. Treatment of cells with antibiotics demonstrated that mCherry could also be used as a reporter for cell death, since fluorescence decreased in the presence of a bactericidal compound, but remained stable in the presence of a bacteriostatic compound. mCherry was functional under hypoxic conditions; using mCherry we demonstrated that the P(mtbB) is expressed early in hypoxia and progressively down-regulated. mCherry and other far-red fluorescent proteins will have multiple uses in investigating the biology of mycobacteria, particularly under non-replicating, or low cell density conditions, as well as providing a novel means of detecting cell death rapidly.
    PLoS ONE 01/2010; 5(3):e9823. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis remains the most hazardous bacterial infection worldwide. The causative agent, Mycobacterium tuberculosis, is a facultative intracellular pathogen of resting MPhi. IFN-gamma secreted by natural killer, CD4 Th 1 and CD8 T cells upon instruction by IL-12 and -18 activates MPhi to restrict mycobacterial growth. Production of both cytokines is induced by TLR signalling in DC and MPhi. Mice deficient for the TLR adaptor, MyD88, are highly susceptible to M. tuberculosis infection. Shared usage of MyD88 by signalling cascades for TLR and receptors for IL-1 and IL-18 prompted us to revisit the role of IL-18 during experimental infection with M. tuberculosis. We show that mice deficient for IL-18 and MyD88 but not for IL-18 receptor promptly succumbed to M. tuberculosis infection in contrast to WT or TLR-2/-4 double KO mice indicating that lack of IL-18 contributes to the high susceptibility of MyD88 KO mice to M. tuberculosis. Without IL-18, the protective Th1 response was decreased and hence, mycobacterial propagation was favoured. Neutrophil-driven lung immunopathology concomitant with unrestrained growth of tubercle bacilli are most likely responsible for the premature death of IL-18 KO mice. Thus, IL-18 plays a decisive role in protective immunity against tuberculosis.
    European Journal of Immunology 01/2010; 40(2):396-405. · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis, the causative agent of tuberculosis, still represents a major public health threat in many countries. Bioluminescence, the production of light by luciferase-catalyzed reactions, is a versatile reporter technology with multiple applications both in vitro and in vivo. In vivo bioluminescence imaging (BLI) represents one of its most outstanding uses by allowing the non-invasive localization of luciferase-expressing cells within a live animal. Despite the extensive use of luminescent reporters in mycobacteria, the resultant luminescent strains have not been fully applied to BLI. One of the main obstacles to the use of bioluminescence for in vivo imaging is the achievement of reporter protein expression levels high enough to obtain a signal that can be detected externally. Therefore, as a first step in the application of this technology to the study of mycobacterial infection in vivo, we have optimised the use of firefly, Gaussia and bacterial luciferases in mycobacteria using a combination of vectors, promoters, and codon-optimised genes. We report for the first time the functional expression of the whole bacterial lux operon in Mycobacterium tuberculosis and M. smegmatis thus allowing the development of auto-luminescent mycobacteria. We demonstrate that the Gaussia luciferase is secreted from bacterial cells and that this secretion does not require a signal sequence. Finally we prove that the signal produced by recombinant mycobacteria expressing either the firefly or bacterial luciferases can be non-invasively detected in the lungs of infected mice by bioluminescence imaging. While much work remains to be done, the finding that both firefly and bacterial luciferases can be detected non-invasively in live mice is an important first step to using these reporters to study the pathogenesis of M. tuberculosis and other mycobacterial species in vivo. Furthermore, the development of auto-luminescent mycobacteria has enormous ramifications for high throughput mycobacterial drug screening assays which are currently carried out either in a destructive manner using LuxAB or the firefly luciferase.
    PLoS ONE 01/2010; 5(5):e10777. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The world's poorest children are likely to be malnourished when receiving their childhood vaccines. It is uncertain whether this affects vaccine efficacy and whether the coadministration of nutrient supplements with vaccines has beneficial or detrimental effects. More recently, a detrimental interaction between vitamin A (VA) supplementation (VAS) and the killed diphtheria-tetanus-pertussis vaccine given in early childhood has been suggested. This report provides a critical review of the published interactions between nutritional status and/or supplementation and vaccine responses in children. Due to an absence of evidence for most nutrients, this analysis focused on protein-energy, vitamins A and D, and iron and zinc. All vaccines were considered. Both observational studies and clinical trials that led to peer-reviewed publications in English or French were included. These criteria led to a pool of 58 studies for protein-energy malnutrition, 43 for VA, 4 for vitamin D, 10 for iron, and 22 for zinc. Our analysis indicates that malnutrition has surprisingly little or no effect on vaccine responses. Evidence for definitive adjunctive effects of micronutrient supplementation at the time of vaccination is also weak. Overall, the paucity, poor quality, and heterogeneity of data make it difficult to draw firm conclusions. The use of simple endpoints that may not correlate strongly with disease protection adds uncertainty. A detailed examination of the immunological mechanisms involved in potential interactions, employing modern methodologies, is therefore required. This would also help us understand the proposed, but still unproven, negative interactions between VAS and vaccine safety, a resolution of which is urgently required.
    Journal of Nutrition 09/2009; 139(11):2154S-218S. · 4.23 Impact Factor

Publication Stats

4k Citations
500.75 Total Impact Points


  • 2010–2014
    • Research Center Borstel
      • • Division of Cellular Microbiology
      • • Division of Infection Immunology
      • • Division of Clinical Infectious Diseases
      Borstel, Lower Saxony, Germany
  • 2012
    • Universität Heidelberg
      • Institute of Hygiene
      Heidelberg, Baden-Wuerttemberg, Germany
    • Christian-Albrechts-Universität zu Kiel
      Kiel, Schleswig-Holstein, Germany
  • 2007–2012
    • London School of Hygiene and Tropical Medicine
      • Department of Immunology and Infection
      London, ENG, United Kingdom
  • 1998–2009
    • Max Planck Institute for Infection Biology
      • Department of Immunology
      Berlin, Land Berlin, Germany
  • 2008
    • King's College London
      • Institute of Pharmaceutical Science
      London, ENG, United Kingdom
    • Georg-August-Universität Göttingen
      • Institute of Inorganic Chemistry
      Göttingen, Lower Saxony, Germany
  • 2005
    • University of Jyväskylä
      • Department of Biological and Environmental Science
      Jyväskylä, Western Finland, Finland
  • 2002
    • Max Planck Society
      München, Bavaria, Germany
  • 1997–1999
    • Washington University in St. Louis
      • • Department of Medicine
      • • Department of Molecular Microbiology
      Saint Louis, MO, United States