B W Ozanne

University of Glasgow, Glasgow, SCT, United Kingdom

Are you B W Ozanne?

Claim your profile

Publications (48)279.78 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of the Rac-guanine nucleotide exchange factor (RacGEF), P-Rex1 is a key determinant of progression to metastasis in a number of human cancers. In accordance with this proposed role in cancer cell invasion and metastasis, we find that ectopic expression of P-Rex1 in an immortalised human fibroblast cell line is sufficient to drive multiple migratory and invasive phenotypes. The invasive phenotype is greatly enhanced by the presence of a gradient of serum or platelet-derived growth factor, and is dependent upon the expression of functional PDGF receptor β. Consistently, the invasiveness of WM852 melanoma cells, which endogenously express P-Rex1 and PDGFRβ, is opposed by siRNA of either of these proteins. Furthermore, the current model of P-Rex1 activation is advanced through demonstration of P-Rex1 and PDGFRβ as components of the same macromolecular complex. These data suggest that P-Rex1 has an influence on physiological migratory processes, such as invasion of cancer cells, both through effects upon classical Rac1-driven motility and a novel association with RTK signalling complexes.
    PLoS ONE 01/2013; 8(1):e53982. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human CD23 protein binds to αvβ3 and αvβ5 integrins. The integrins recognize a short tripeptide motif of arg-lys-cys (RKC) in CD23, and peptides containing this motif inhibit the binding of CD23 to B cells and monocytes; neither fibronectin, nor vitronectin, which contain arg-gly-asp motifs, inhibit binding of RKC-containing peptides to cells. RKC-containing peptides derived from CD23 show dose-dependent, biphasic binding profiles to both αvβ3 and αvβ5 that are cation-independent but sensitive to high chloride ion concentrations. Substitution of one basic residue in the RKC motif with alanine reduces but does not abolish integrin binding or the ability of peptides to stimulate pre-B cell growth or cytokine release by monocytes. Substitution of both basic residues abolishes both integrin binding and biological activity of CD23-derived peptides. These features indicate that binding of RKC-containing peptides to αv integrins has clearly distinct characteristics to those for binding of RGD-containing ligands.
    Biochemical and Biophysical Research Communications 04/2012; 422(2):207-12. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human soluble CD23 (sCD23) protein displays highly pleiotropic cytokine-like activity. Monocytic cells express the sCD23-binding integrins αVβ(3), αVβ(5), αMβ(2) and αXβ(2), but it is unclear which of these four integrins most acutely regulates sCD23-driven cytokine release. The hypothesis that ligation of different sCD23-binding integrins promoted release of distinct subsets of cytokines was tested. Lipopolysaccharide (LPS) and sCD23 promoted release of distinct groups of cytokines from the THP-1 model cell line. The sCD23-driven cytokine release signature was characterized by elevated amounts of RANTES (CCL5) and a striking increase in interleukin-8 (IL-8; CXCL8) secretion, but little release of macrophage inflammatory protein 1β (MIP-1β; CCL4). Antibodies to αVβ(3) or αXβ(2) both promoted IL-8 release, consistent with the sCD23-driven pattern, but both also evoked strong MIP-1β secretion; simultaneous ligation of these two integrins further increased cytokine secretion but did not alter the pattern of cytokine output. In both model cell lines and primary tissue, integrin-mediated cytokine release was more pronounced in immature monocyte cells than in mature cells. The capacity of anti-integrin monoclonal antibodies to elicit a cytokine release response is epitope-dependent and also reflects the differentiation state of the cell. Although a pattern of cytokine release identical to that provoked by sCD23 could not be elicited with any individual anti-integrin monoclonal antibody, αXβ(2) and αVβ(3) appear to regulate IL-8 release, a hallmark feature of sCD23-driven cytokine secretion, more acutely than αMβ(2) or αVβ(5).
    Immunology 02/2012; 136(2):241-51. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD23 is the low-affinity receptor for immunoglobulin (Ig)E and plays important roles in the regulation of IgE responses. CD23 can be cleaved from cell surfaces to yield a range of soluble CD23 (sCD23) proteins that have pleiotropic cytokine-like activities. The regions of CD23 responsible for interaction with many of its known ligands, including IgE, CD21, major histocompatibility complex (MHC) class II and integrins, have been identified and help to explain the structure-function relationships within the CD23 protein. Translational studies of CD23 underline its credibility as a target for therapeutic intervention strategies and illustrate its involvement in mediating therapeutic effects of antibodies directed at other targets.
    Clinical & Experimental Immunology 10/2010; 162(1):12-23. · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify functionally related prognostic gene sets for head and neck squamous cell carcinoma (HNSCC) by unsupervised statistical analysis of microarray data. Microarray analysis was performed on 14 normal oral epithelium and 71 HNSCCs from patients with outcome data. Spectral clustering (SC) analysis of the data set identified multiple vectors representing distinct aspects of gene expression heterogeneity between samples. Gene ontology (GO) analysis of vector gene lists identified gene sets significantly enriched within defined biologic pathways. The prognostic significance of these was established by Cox survival analysis. The most influential SC vectors were V2 and V3. V2 separated normal from tumor samples. GO analysis of V2 gene lists identified pathways with heterogeneous expression between HNSCCs, notably focal adhesion (FA)/extracellular matrix remodeling and cytokine-cytokine receptor (CR) interactions. Similar analysis of V3 gene lists identified further heterogeneity in CR pathways. V2CR genes represent an innate immune response, whereas high expression of V3CR genes represented an adaptive immune response that was not dependent on human papillomavirus status. Survival analysis demonstrated that the FA gene set was prognostic of poor outcome, whereas classification for adaptive immune response by the CR gene set was prognostic of good outcome. A combined FA&CR model dramatically exceeded the performance of current clinical classifiers (P < .001 in our cohort and, importantly, P = .007 in an independent cohort of 60 HNSCCs). The application of SC and GO algorithms to HNSCC microarray data identified gene sets highly significant for predicting patient outcome. Further large-scale studies will establish the usefulness of these gene sets in the clinical management of HNSCC.
    Journal of Clinical Oncology 06/2010; 28(17):2881-8. · 18.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kelch-related protein 1 (Krp1) is up-regulated in oncogene-transformed fibroblasts. The Kelch repeats interact directly with the actin-binding protein Lasp-1 in membrane ruffles at the tips of pseudopodia, where both proteins are necessary for pseudopodial elongation. Herein, we investigate the molecular basis for this interaction. Probing an array of overlapping decapeptides of Rattus norvegicus (Rat) Krp1 with recombinant Lasp-1 revealed two binding sites; one ((317)YDPMENECYLT(327)) precedes the first of five Kelch repeats, and the other ((563)TEVNDIWKYEDD(574)) is in the last of the five Kelch repeats. Mutational analysis established that both binding sites are necessary for Krp1-Lasp-1 interaction in vitro and function in vivo. The crystal structure of the C-terminal domain of rat Krp1 (amino acids 289-606) reveals that both binding sites are brought into close proximity by the formation of a novel six-bladed beta-propeller, where the first blade is not formed by a Kelch repeat.
    Journal of Biological Chemistry 09/2009; 284(44):30498-507. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD23 acts through the alphavbeta5 integrin to promote growth of human pre-B cell lines in an adhesion-independent manner. alphavbeta5 is expressed on normal B-cell precursors in the bone marrow. Soluble CD23 (sCD23), short CD23-derived peptides containing the arg-lys-cys (RKC) motif recognized by alphavbeta5 and anti-alphavbeta5 monoclonal antibodies (MAbs) all sustain growth of pre-B cell lines. The chemokine stromal cell-derived factor-1 (SDF-1) regulates key processes during B-cell development. SDF-1 enhanced the growth-sustaining effect driven by ligation of alphavbeta5 with anti-alphavbeta5 MAb 15F-11, sCD23 or CD23-derived RKC-containing peptides. This effect was restricted to B-cell precursors and was specific to SDF-1. The enhancement in growth was associated with the activation of extracellular signal-regulated kinase (ERK) and both these responses were attenuated by the MEK inhibitor U0126. Finally, platelet-derived growth factor also enhanced both alphavbeta5-mediated cell growth and ERK activation. The data suggest that adhesion-independent growth-promoting signals delivered to B-cell precursors through the alphavbeta5 integrin can be modulated by cross-talk with receptors linked to both G-protein and tyrosine kinase-coupled signalling pathways.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 08/2009; 23(10):1807-17. · 10.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor beta-1 (TGF-beta) acts as both a tumour suppressor and a tumour promoter in a context-dependent manner. The tumour-promoting activities of TGF-beta are likely to result from a combination of Smad and non-Smad signalling pathways but remain poorly understood. Here we show that TGF-beta-mediated activation of RhoA is dependent on the kinase activity of ALK5 and that continuous ALK5 activity maintains basal RhoA-ROCK signalling, cell morphology and actin dynamics in serum-starved rodent fibroblasts independently of Smad2, Smad3 and Smad4. In immortalized human diploid fibroblasts, we show that oncogenic rewiring by transduction of (V12)HaRas instigates regulation of RhoA-ROCK signalling through an autocrine TGF-beta1-ALK5 pathway. Furthermore, we show that ALK5-mediated activation of RhoA is required for efficient (V12)HaRas, V-Raf and (V600E)BRAF transformation and (V12)HaRas-mediated anchorage-independent growth. These findings identify a new pro-oncogenic activity of TGF-beta and indicate that tumours harbouring (V12)HaRas and (V600E)BRAF mutations may be susceptible to TGF-beta signalling inhibitors.
    Oncogene 01/2009; 28(7):983-93. · 7.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we report a direct interaction between the beta1 integrin cytoplasmic tail and Rab25, a GTPase that has been linked to tumor aggressiveness and metastasis. Rab25 promotes a mode of migration on 3D matrices that is characterized by the extension of long pseudopodia, and the association of the GTPase with alpha5beta1 promotes localization of vesicles that deliver integrin to the plasma membrane at pseudopodial tips as well as the retention of a pool of cycling alpha5beta1 at the cell front. Furthermore, Rab25-driven tumor-cell invasion into a 3D extracellular matrix environment is strongly dependent on ligation of fibronectin by alpha5beta1 integrin and the capacity of Rab25 to interact with beta1 integrin. These data indicate that Rab25 contributes to tumor progression by directing the localization of integrin-recycling vesicles and thereby enhancing the ability of tumor cells to invade the extracellular matrix.
    Developmental Cell 11/2007; 13(4):496-510. · 12.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD23 is a type II transmembrane glycoprotein synthesized by hematopoietic cells that has biological activity in both membrane-bound and freely soluble forms, acting via a number of receptors, including integrins. We demonstrate here that soluble CD23 (sCD23) sustains growth of human B cell precursors via an RGD-independent interaction with the alphavbeta5 integrin. The integrin recognizes a tripeptide motif in a small disulfide-bonded loop at the N terminus of the lectin head region of CD23, centered around Arg(172), Lys(173), and Cys(174) (RKC). This RKC motif is present in all forms of sCD23 with cytokine-like activity, and cytokine activity is independent of the lectin head, an "inverse RGD" motif, and the CD21 and IgE binding sites. RKC-containing peptides derived from this region of CD23 bind alphavbeta5 and are biologically active. The binding and activity of these peptides is unaffected by inclusion of a short peptide containing the classic RGD sequence recognized by integrins, and, in far-Western analyses, RKC-containing peptides bind to the beta subunit of the alphavbeta5 integrin. The interaction between alphavbeta5 and sCD23 indicates that integrins deliver to cells important signals initiated by soluble ligands without the requirement for interactions with RGD motifs in their common ligands. This mode of integrin signaling may not be restricted to alphavbeta5.
    Journal of Biological Chemistry 10/2007; 282(37):27315-26. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of E-cadherin-mediated cell-cell junctions has been correlated with cancer cell invasion and poor patient survival. p120-catenin has emerged as a key player in promoting E-cadherin stability and adherens junction integrity and has been proposed as a potential invasion suppressor by preventing release of cells from the constraints imposed by cadherin-mediated cell-cell adhesion. However, it has been proposed that tyrosine phosphorylation of p120 may contribute to cadherin-dependent junction disassembly during invasion. Here, we use small interfering RNA (siRNA) in A431 cells to show that knockdown of p120 promotes two-dimensional migration of cells. In contrast, p120 knockdown impairs epidermal growth factor-induced A431 invasion into three-dimensional matrix gels or in organotypic culture, whereas re-expression of siRNA-resistant p120, or a p120 isoform that cannot be phosphorylated on tyrosine, restores the collective mode of invasion employed by A431 cells in vitro. Thus, p120 promotes A431 cell invasion in a phosphorylation-independent manner. We show that the collective invasion of A431 cells depends on the presence of cadherin-mediated (P- and E-cadherin) cell-cell contacts, which are lost in cells where p120 expression is knocked down. Furthermore, membranous p120 is maintained in invasive squamous cell carcinomas in tumours suggesting that p120 may be important for the collective invasion of tumours cells in vivo.
    Oncogene 09/2007; 26(36):5214-28. · 7.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis, the aggressive spread of a malignant tumor to distant organs, is a major cause of death in cancer patients. Despite this critical role in cancer outcomes, the molecular mechanisms that control this process are just beginning to be understood. Metastasis is largely dependent upon the ability of tumor cells to invade the barrier formed by the basement membrane and to migrate through neighboring tissues. This review will summarize the evidence that tumor cell invasion is the result of oncogene-mediated signal transduction pathways that control the expression of a specific set of genes that together mediate tumor cell invasion. We focus on the role of the transcription factor AP-1 to both induce the expression of genes that function as invasion effectors and repress other genes that function as invasion suppressors. This identifies AP-1 as a critical regulator of a complex program of gene expression that defines the invasive phenotype.
    Oncogene 02/2007; 26(1):1-10. · 7.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HER2 status is routinely tested using immunohistochemistry or FISH following the licensing of a therapeutic agent targeting HER2. However, neither of these methods provides quantitative information relating to the 70-80% of patients with levels of expression lower than the assay detection thresholds. In this study, radioimmunohistochemistry was used to detect quantitative HER2 protein expression in 178 breast cancers. Survival analysis was performed, as were correlations with known prognostic variables and with overexpression of other HER family members. It is demonstrated that the populations expressing very high and very low levels of HER2 are each associated with increased risk of cancer-specific death on survival analysis (p = 0.0043). The group with low levels of HER2 was more likely to be of higher grade, EGFR-positive and ER/HER3/HER4-negative. HER2-positive cases were frequently ER-negative/HER3-positive, whilst cases with normal HER2 expression were often ER-positive/HER4-positive. The aggressive nature of the tumour group with low HER2 expression may be explained by actions of other HER family members, particularly EGFR, but whether these or other factors have a negative regulatory effect on HER2 expression remains to be determined.
    The Journal of Pathology 12/2006; 210(3):358-62. · 7.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells can invade three-dimensional matrices by distinct mechanisms, recently defined by their dependence on extracellular proteases, including matrix metalloproteinases. Upon treatment with protease inhibitors, some tumour cells undergo a 'mesenchymal to amoeboid' transition that allows invasion in the absence of pericellular proteolysis and matrix degradation. We show here that in HT1080 cells, this transition is associated with weakened integrin-dependent adhesion, consistently reduced cell surface expression of the alpha2beta1 integrin collagen receptor and impaired signalling downstream, as judged by reduced autophosphorylation of focal adhesion kinase (FAK). On examining cancer cells that use defined invasion strategies, we show that distinct from mesenchymal invasion, amoeboid invasion is independent of intracellular calpain 2 proteolytic activity that is usually needed for turnover of integrin-linked adhesions during two-dimensional planar migration. Moreover, an inhibitor of Rho/ROCK signalling, which specifically impairs amoeboid-like invasion, restores cell surface expression of alpha2beta1 integrin, downstream FAK autophosphorylation and calpain 2 sensitivity--features of mesenchymal invasion. These findings link weakened integrin function to a lack of requirement for calpain 2-mediated integrin adhesion turnover during amoeboid invasion. In keeping with the need for integrin adhesion turnover, mesenchymal invasion is uniquely sensitive to Src inhibitors. Thus, the need for a major pathway that controls integrin adhesion turnover defines and distinguishes cancer cell invasion strategies.
    Oncogene 10/2006; 25(42):5726-40. · 7.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The invasive and metastatic behaviour of tumours impacts crucially on the clinical management of cancer. Accordingly, it is important to understand the regulation of tumour cell invasiveness. Genetic analysis of worms, Drosophila and mice has provided evidence that invasion is a genetic pathway regulated by transcription factors that are often implicated in tumour cell invasion. Recent evidence has revealed much concerning the role of one particular transcription factor, AP1, which is involved in the regulation of a multigenic invasion program in which upregulated and downregulated genes function as invasion effectors and suppressors, respectively. Differentially expressed genes cooperatively enhance pseudopod elongation during the mesenchymal mode of invasion by altering the function, localisation and activity of non-differentially expressed proteins.
    Current Opinion in Genetics & Development 03/2006; 16(1):65-70. · 7.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor AP-1, which is composed of Fos and Jun family proteins, plays an essential role in tumor cell invasion by altering gene expression. We report here that Krp1, the AP-1 up-regulated protein that has a role in pseudopodial elongation in v-Fos-transformed rat fibroblast cells, forms a novel interaction with the nondifferentially expressed actin binding protein Lasp-1. Krp1 and Lasp-1 colocalize with actin at the tips of pseudopodia, and this localization is maintained by continued AP-1 mediated down-regulation of fibronectin that in turn suppresses integrin and Rho-ROCK signaling and allows pseudopodial protrusion and mesenchyme-like invasion. Mutation analysis of Lasp-1 demonstrates that its SH3 domain is necessary for pseudopodial extension and invasion. The results support the concept of an AP-1-regulated multigenic invasion program in which proteins encoded by differentially expressed genes direct the function, localization, and activity of proteins that are not differentially expressed to enhance the invasiveness of cells.
    Molecular and Cellular Biology 03/2006; 26(4):1480-95. · 5.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligodendrocyte function is central to the maintenance of the normal nervous system in health and disease. In particular, process formation and the generation of large sheets of myelin are important components of their biological properties. We have investigated the role of Mayven, a recently identified member of the kelch family of proteins, in process extension in oligodendrocyte-lineage cells. The kelch superfamily consists of a large number of structurally diverse proteins characterized by the presence of a kelch-repeat domain. Other members of this family associate with the actin cytoskeleton and regulate process length. Mayven is expressed predominantly in the CNS, has six kelch repeats, and is an actin-binding protein, associating with actin through its kelch-repeat domain. We have cloned rat Mayven and examined its role in the oligodendrocyte lineage by using RT-PCR, RNA interference, and a truncated, dominant-negative myc-tagged Mayven. Oligodendrocyte precursors treated with siRNA directed to Mayven have reduced process length, but there was no change in migration or expression of differentiation markers. Immunocytochemistry demonstrated that Mayven associated with F-actin at cell tips. Finally, overexpression of truncated Mayven lacking the SH3 ligand binding domain in oligodendrocyte-lineage cells resulted in shorter process formation, which was augmented when the cells were plated on laminin and fibronectin. These data suggest a role for Mayven in oligodendrocyte precursor cell process formation.
    Journal of Neuroscience Research 10/2005; 81(5):622-31. · 2.97 Impact Factor
  • Lynn C McGarry, Joseph N Winnie, Bradford W Ozanne
    [Show abstract] [Hide abstract]
    ABSTRACT: Transformation of fibroblasts with the v-fos oncogene produces a highly invasive phenotype that is mediated by changes in gene expression. Inhibition of histone deacetylase (HDAC) activity with trichostatin A (TSA) or valproic acid (VPA) at concentrations that do not affect morphology, motility, chemotaxis or proliferation, strongly inhibits invasion and results in the re-expression of a significant proportion of those genes that are downregulated in the v-Fos-transformed cells. Independent expression of three of these re-expressed genes, (Ring1 and YY1 binding protein (RYBP); protocadherin gamma subfamily C,3 (PCDHGC3); and signal transducer and activator of transcription 6 (STAT6)) in Fos-transformed cells, has no effect on morphology, motility, chemotaxis or proliferation, but strongly inhibits invasion. Therefore, we conclude that the ability of v-Fos-transformed cells to invade is dependent upon repression of gene expression through either direct or indirect HDAC activity.
    Oncogene 08/2004; 23(31):5284-92. · 7.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invasion is generally perceived to be a late event during the progression of human cancer, but to date there are no consistent reports of alterations specifically associated with malignant conversion. We provide evidence that the v-Fos oncogene induces changes in gene expression that render noninvasive normal human diploid fibroblasts highly invasive, without inducing changes in growth factor requirements or anchorage dependence for proliferation. Furthermore, v-Fos-stimulated invasion is independent of the pRb/p16(INK4a) and p53 tumor suppressor pathways and telomerase. We have performed microarray analysis using Affymetrix GeneChips, and the gene expression profile of v-Fos transformed cells supports its role in the regulation of invasion, independent from proliferation. We also demonstrate that invasion, but not proliferation, is dependent on the activity of the up-regulated epidermal growth factor receptor. Taken together, these results indicate that AP-1-directed invasion could precede deregulated proliferation during tumorigenesis and that sustained activation of AP-1 could be the epigenetic event required for conversion of a benign tumor into a malignant one, thereby explaining why many malignant human tumors present without an obvious premalignant hyperproliferative dysplastic lesion.
    Molecular and Cellular Biology 03/2004; 24(4):1540-59. · 5.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Progression to an invasive, metastatic tumour requires the coordinated expression and function of a number of gene products, as well as their regulation in the context of invasion. The transcription factor AP-1 regulates expression of many of those genes necessary for implementation of the invasion programme. Two such gene products, CD44 and ezrin, are both upregulated in fibroblasts transformed by v-fos and are commonly implicated in cell motility and invasion. Here we report that CD44 and ezrin colocalise to membrane ruffles and microvilli of A431 cells after treatment with EGF. However, A431 cells expressing dominant-negative c-Jun (TAM67), and which as a consequence fail to invade in response to EGF, also fail to correctly localise CD44 and ezrin. CD44 and ezrin are both substrates for Protein Kinase C, and we show that their EGF-dependent colocalisation requires Protein Kinase C activity. Associated with TAM67 expression and disrupted CD44 and ezrin colocalisation is the increased expression and activation of the novel PKC theta isoform. Expression of PKC theta in A431 cells results in the inhibition of cell motility and disrupted localisation of CD44 and ezrin. We propose that AP-1 regulates the integrity of Protein Kinase C signalling and identifies PKC theta as a potential suppressor of the invasion programme.
    Journal of Cell Science 08/2002; 115(Pt 13):2713-24. · 5.88 Impact Factor

Publication Stats

2k Citations
279.78 Total Impact Points

Institutions

  • 1995–2012
    • University of Glasgow
      • • College of Medical, Veterinary and Life Sciences
      • • Division of Molecular & Cellular Biology
      Glasgow, SCT, United Kingdom
    • University of Texas Southwestern Medical Center
      • Department of Microbiology
      Dallas, TX, United States
  • 1993–2012
    • Beatson Institute for Cancer Research
      Glasgow, Scotland, United Kingdom
  • 2006
    • Georgia Health Sciences University
      • Institute of Molecular Medicine and Genetics
      Augusta, Georgia, United States