Jun Hirabayashi

Kagawa University, Takamatu, Kagawa, Japan

Are you Jun Hirabayashi?

Claim your profile

Publications (259)1004.39 Total impact

  • Lectins, 01/2007: pages 239-266; , ISBN: 9780444530776
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both saturated and unsaturated forms of isomeric unsulfated glycosaminoglycan (GAG) oligosaccharides, i.e., tetrasaccharides of chondroitin (CH) and hyaluronan (HA), were analyzed by electrospray ionization mass spectrometry/mass spectrometry. Although the only structural difference between them was the hydroxyl group at the C-4 position in N-acetylhexosamine (GalNAc or GlcNAc, respectively), given the same m/z value of precursor ions, these isomers in both their saturated and unsaturated forms could be separated by careful examination of diagnostic fragment ions in their product ion mass spectra when the relative abundances of these fragment ions were considered. In addition, the product ion mass spectrum of the unsaturated HA tetrasaccharide was compared with its linkage isomer, N-acetylheparosan tetrasaccharide. In this case, the isomers were more easily differentiated by comparing their characteristic spectral patterns. By adopting this approach, systematic differentiation of isomeric unsulfated GAG oligosaccharides should be achieved by means of fragmentation. It should also contribute widely to GAG-related biochemical and medicinal research in the future.
    Journal of the Mass Spectrometry Society of Japan 01/2007; 55(1):1-6. DOI:10.5702/massspec.55.1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mucin-type sialoglycoprotein, podoplanin (aggrus), is a platelet-aggregating factor on cancer cells. We previously described up-regulated expression of podoplanin in malignant astrocytic tumors including glioblastoma. Its expression was associated with tumor malignancy. In the present study, we investigated podoplanin expression and platelet-aggregating activities of glioblastoma cell lines. First, we established a highly reactive anti-podoplanin antibody, NZ-1, which inhibits podoplanin-induced platelet aggregation completely. Of 15 glioblastoma cell lines, LN319 highly expressed podoplanin and induced platelet aggregation. Glycan profiling using a lectin microarray showed that podoplanin on LN319 possesses sialic acid, which is important in podoplanin-induced platelet aggregation. Interestingly, NZ-1 neutralized platelet aggregation by LN319. These results suggest that podoplanin is a main reason for platelet aggregation induced by LN319. We infer that NZ-1 is useful to determine whether platelet aggregation is podoplanin-specific or not. Furthermore, podoplanin might become a therapeutic target of glioblastoma for antibody-based therapy.
    Biochemical and Biophysical Research Communications 12/2006; 349(4):1301-7. DOI:10.1016/j.bbrc.2006.08.171 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel lectin, PPL, was isolated from the mantle of penguin wing oyster (Pteria penguin) by affinity chromatography on mucin-Sepharose 4B and cation exchange chromatography on HiTrap SP. This lectin was estimated to be a 21-kDa monomer by gel filtration, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted time of flight (MALDI-TOF) mass spectrometry. However, dynamic light scattering experiments revealed that a non-covalently linked dimer formed under high salt conditions (500 mM NaCl). Interestingly, PPL showed an increasing hemagglutinating activity with increasing salt concentration. The amino acid sequence of PPL was determined by direct protein sequence analysis and cDNA cloning. The 167-amino acid sequence included 24 lysine residues and had two tandemly repeated homologous domains (residues 20-78 and 107-165) with 44% internal homology. PPL showed sequence homology to L-rhamnose-binding lectins from fish eggs and a D-galactose-binding lectin from sea urchin eggs, with sequence identities in the range 37-48%. PPL agglutinated various animal erythrocytes independently of calcium ions. The minimum concentration of PPL needed to agglutinate rabbit erythrocytes was 0.5 micro g/ml, and the most effective saccharides to inhibit the hemagglutination were D-galactose, methyl-D-galactopyranoside and N-acetyl-D-lactosamine. Lactose also inhibited hemagglutination, but L-rhamnose did so only weakly despite the sequence homology with trout egg L-rhamnose-binding lectins. The carbohydrate-binding specificity of PPL was further examined by frontal affinity chromatography using 37 different pyridylaminated oligosaccharides. PPL was found to have strong binding affinity for various oligosaccharides that have Galbeta1-4Glu/GlcNAc, Galbeta1-3GalNAc/GlcNAc and Galalpha 1-4Gal moieties in their structure. PPL had a high thermal stability and retained 50% of its hemagglutinating activity after incubation at 70 degrees C for 100 min. It agglutinated some Gram-negative bacteria by recognizing lipopolysaccharides. Together, these results suggest that PPL is a new member of the trout egg lectin family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity. We conclude that the trout egg lectin family proteins, in particular their carbohydrate recognition domains, have acquired diverse carbohydrate-binding specificities during molecular evolution.
    Molecular Diversity 12/2006; 10(4):607-18. DOI:10.1007/s11030-006-9051-3 · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-L-arabinofuranosidase catalyses the hydrolysis of the alpha-1,2-, alpha-1,3-, and alpha-1,5-L-arabinofuranosidic bonds in L-arabinose-containing hemicelluloses such as arabinoxylan. AkAbf54 (the glycoside hydrolase family 54 alpha-L-arabinofuranosidase from Aspergillus kawachii) consists of two domains, a catalytic and an arabinose-binding domain. The latter has been named AkCBM42 [family 42 CBM (carbohydrate-binding module) of AkAbf54] because homologous domains are classified into CBM family 42. In the complex between AkAbf54 and arabinofuranosyl-alpha-1,2-xylobiose, the arabinose moiety occupies the binding pocket of AkCBM42, whereas the xylobiose moiety is exposed to the solvent. AkCBM42 was found to facilitate the hydrolysis of insoluble arabinoxylan, because mutants at the arabinose binding site exhibited markedly decreased activity. The results of binding assays and affinity gel electrophoresis showed that AkCBM42 interacts with arabinose-substituted, but not with unsubstituted, hemicelluloses. Isothermal titration calorimetry and frontal affinity chromatography analyses showed that the association constant of AkCBM42 with the arabinose moiety is approximately 10(3) M(-1). These results indicate that AkCBM42 binds the non-reducing-end arabinofuranosidic moiety of hemicellulose. To our knowledge, this is the first example of a CBM that can specifically recognize the side-chain monosaccharides of branched hemicelluloses.
    Biochemical Journal 11/2006; 399(3). DOI:10.1042/BJ20060567 · 4.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural glycomics plays a fundamental role in glycoscience and glycotechnology. In this paper, a novel strategy for the structural characterization of glycans is described, in which MS2 analysis involving a LIFT-TOF/TOF procedure is combined with frontal affinity chromatography (FAC). As model compounds, 20 neutral pyridylaminated (PA) oligosaccharides were chosen, which included four groups of structural isomers differing in sequence, linkage, position, or branching features. By depicting significant diagnostic ions on MS2, most of the analyzed oligosaccharides were successfully differentiated, while two pairs of linkage isomers, i.e., LNT/LNnT, and LNH/LNnH were not. For subsequent analysis by FAC, 14 lectins showing significant affinity to either LNT (type 1) or LNnT (type 2) were screened, and a galectin from the marine sponge Geodia cydonium (GC1) and a plant seed lectin from Ricinus communis (RCA-I) were used for determination of type 1 and 2 chains, respectively. With these specific probes, both of the isomeric pairs were unambiguously differentiated. Furthermore, a pair of triantennary, asparagine-linked oligosaccharide isomers could also be successfully differentiated. Thus, the combination of MS2 and FAC is a practical alternative for the structural characterization of complex glycans.
    Journal of Biochemistry 10/2006; 140(3):337-47. DOI:10.1093/jb/mvj154 · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: beta1,4-N-acetylgalactosaminyltransferase III (beta4GalNAc-T3), which was recently cloned and identified, exhibits GalNAc transferase activity toward a GlcNAcbeta residue with beta1,4-linkage, forming the N,N'-diacetyllactosediamine, GalNAcbeta1,4GlcNAc (LacdiNAc or LDN). Though LacdiNAc has not been found in the gastric mucosa, a large amount of transcript was detected in our previous study. To increase our knowledge of beta4GalNAc-T3 expression and its product LacdiNAc, we examined the exact localization of beta4GalNAc-T3 in human gastric mucosa using a newly developed antibody, monoclonal antibody (mAb) K1356. This antibody specifically detected the enzyme that transfected the beta4GalNAc-T3 gene into MKN45 cells, and the terminal betaGalNAc epitope yielded on the cell surface was recognized by a lectin, Wisteria floribunda agglutinin (WFA). beta4GalNAc-T3 was localized in the supra-nuclear region of surface mucous cells in gastric mucosa, and WFA positively stained the mucins secreted by the cells. In contrast, in the cells of the glandular compartment in the fundic glands and a few cells in the pyloric glands, beta4GalNAc-T3 was observed in the basolateral position of the nucleus, where no WFA reactivity was detected. The anti-Tn (GalNAcalpha-O-Ser/Thr) antibody staining did not overlap with the WFA staining. By measuring the binding activity of WFA using automated frontal affinity chromatography (FAC), we found WFA to bind most strongly LacdiNAc among the sugar chains examined. Neither beta4GalNAc-T3 nor WFA-positive staining was detected in intestinal metaplastic cells. These results suggest that the supra-nuclear expression of beta4GalNAc-T3 is essential for the formation of LacdiNAc on the surface mucous cells and that LacdiNAc and beta4GalNAc-T3 are novel differentiation markers of surface mucous cells in the gastric mucosa.
    Glycobiology 10/2006; 16(9):777-85. DOI:10.1093/glycob/cwl005 · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lectin-based structural glycomics requires a search for useful lectins and their biochemical characterization to profile complex features of glycans. In this paper, two GlcNAc-binding lectins are reported with their detailed oligosaccharide specificity. One is a classic plant lectin, Griffonia simplicifolia lectin-II (GSL-II), and the other is a novel fungal lectin, Boletopsis leucomelas lectin (BLL). Their sugar-binding specificity was analyzed by frontal affinity chromatography using 146 glycans (125 pyridylaminated and 21 p-nitrophenyl saccharides). As a result, it was found that both GSL-II and BLL showed significant affinity toward complex-type N-glycans, which are either partially or completely agalactosylated. However, their branch-specific features differed significantly: GSL-II strongly bound to agalacto-type, tri- or tetra-antennary N-glycans with its primary recognition of a GlcNAc residue transferred by GlcNAc-transferase IV, while BLL preferred N-glycans with fewer branches. In fact, the presence of a GlcNAc residue transferred by GlcNAc-transferase V abolishes the binding of BLL. Thus, GSL-II and BLL forms a pair of complementally probes to profile a series of agalacto-type N-glycans.
    Journal of Biochemistry 09/2006; 140(2):285-91. DOI:10.1093/jb/mvj148 · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Agaricus bisporus agglutinin (ABA) is known as a useful lectin to detect T-antigen (Core1) disaccharide (Galbeta1-3GalNAcalpha) and related O-linked glycans. However, a recent X-ray crystallographic study revealed the presence of another intrinsic sugar-binding site, i.e., for GlcNAc. To confirm this possibility, detailed analysis was performed using two advanced methods: lectin microarray and frontal affinity chromatography (FAC). In the lectin microarray, intense signals were observed on ABA spots for both N-glycanase-treated and O-glycanase/beta1-4galactosidase-treated Cy3-labeled asialofetuin. This indicates substantial affinity for both O-linked and agalactosylated (GlcNAc-exposed) N-linked glycans. A further approach by FAC using 20 pNP and 130 PA-oligosaccharides demonstrated that ABA bound to Core1 (K(d) = 3.4 x 10(-6) M) and Core2 (1.9 x 10(-5) M) but not to Core3 and Core6 O-linked glycans. It also showed substantial affinity to mono-, bi-, and tri-antennary agalactosylated complex-type N-linked glycans (K(d) > 1.8 x 10(-5) M). These results establish ABA as a lectin having dual sugar-binding sites with distinct specificity, i.e., for Gal-exposed O-linked glycans and GlcNAc-exposed N-linked glycans.
    Biochemical and Biophysical Research Communications 08/2006; 347(1):215-20. DOI:10.1016/j.bbrc.2006.06.073 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intraocular inflammatory diseases are a common cause of severe visual impairment and blindness. In this study, we investigated the immunoregulatory role of galectin-1 (Gal-1), an endogenous lectin found at sites of T cell activation and immune privilege, in experimental autoimmune uveitis (EAU), a Th1-mediated model of retinal disease. Treatment with rGal-1 either early or late during the course of interphotoreceptor retinoid-binding protein-induced EAU was sufficient to suppress ocular pathology, inhibit leukocyte infiltration, and counteract pathogenic Th1 cells. Administration of rGal-1 at the early or late phases of EAU ameliorated disease by skewing the uveitogenic response toward nonpathogenic Th2 or T regulatory-mediated anti-inflammatory responses. Consistently, adoptive transfer of CD4(+) regulatory T cells obtained from rGal-1-treated mice prevented the development of active EAU in syngeneic recipients. In addition, increased levels of apoptosis were detected in lymph nodes from mice treated with rGal-1 during the efferent phase of the disease. Our results underscore the ability of Gal-1 to counteract Th1-mediated responses through different, but potentially overlapping anti-inflammatory mechanisms and suggest a possible therapeutic use of this protein for the treatment of human uveitic diseases of autoimmune etiology.
    The Journal of Immunology 06/2006; 176(10):6323-32. DOI:10.4049/jimmunol.176.10.6323 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A gene encoding an exo-beta-1,3-galactanase from Clostridium thermocellum, Ct1,3Gal43A, was isolated. The sequence has similarity with an exo-beta-1,3-galactanase of Phanerochaete chrysosporium (Pc1,3Gal43A). The gene encodes a modular protein consisting of an N-terminal glycoside hydrolase family 43 (GH43) module, a family 13 carbohydrate-binding module (CBM13), and a C-terminal dockerin domain. The gene corresponding to the GH43 module was expressed in Escherichia coli, and the gene product was characterized. The recombinant enzyme shows optimal activity at pH 6.0 and 50 degrees C and catalyzes hydrolysis only of beta-1,3-linked galactosyl oligosaccharides and polysaccharides. High-performance liquid chromatography analysis of the hydrolysis products demonstrated that the enzyme produces galactose from beta-1,3-galactan in an exo-acting manner. When the enzyme acted on arabinogalactan proteins (AGPs), the enzyme produced oligosaccharides together with galactose, suggesting that the enzyme is able to accommodate a beta-1,6-linked galactosyl side chain. The substrate specificity of the enzyme is very similar to that of Pc1,3Gal43A, suggesting that the enzyme is an exo-beta-1,3-galactanase. Affinity gel electrophoresis of the C-terminal CBM13 did not show any affinity for polysaccharides, including beta-1,3-galactan. However, frontal affinity chromatography for the CBM13 indicated that the CBM13 specifically interacts with oligosaccharides containing a beta-1,3-galactobiose, beta-1,4-galactosyl glucose, or beta-1,4-galactosyl N-acetylglucosaminide moiety at the nonreducing end. Interestingly, CBM13 in the C terminus of Ct1,3Gal43A appeared to interfere with the enzyme activity toward beta-1,3-galactan and alpha-l-arabinofuranosidase-treated AGP.
    Applied and Environmental Microbiology 05/2006; 72(5):3515-3523. DOI:10.1128/AEM.72.5.3515-3523.2006 · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-1 is a beta-galactoside-binding lectin. Previous studies have shown that galectin-1 was expressed in fibroblasts of chronic pancreatitis and of desmoplastic reaction associated with pancreatic cancer. These fibroblasts are now recognized as activated pancreatic stellate cells (PSCs). Here, we examined the role of galectin-1 in cell functions of PSCs. PSCs were isolated from rat pancreatic tissue and used in their culture-activated phenotype unless otherwise stated. Expression of galectin-1 was assessed by Western blot analysis, RT-PCR, and immunofluorescent staining. The effects of recombinant galectin-1 on chemokine production and proliferation were evaluated. Activation of transcription factors was assessed by EMSA. Activation of MAPKs was examined by Western blot analysis using anti-phosphospecific antibodies. Galectin-1 was strongly expressed in culture-activated but not freshly isolated PSCs. Recombinant galectin-1 increased proliferation and production of monocyte chemoattractant protein-1 and cytokine-induced neutrophil chemoattractant-1. Galectin-1 activated ERK, JNK, activator protein-1, and NF-kappaB, but not p38 MAPK or Akt. Galectin-1 induced proliferation through ERK and chemokine production mainly through the activation of NF-kappaB and in part by JNK and ERK pathways. These effects of galectin-1 were abolished in the presence of thiodigalactosie, an inhibitor of beta-galactoside binding. In conclusion, our results suggest a role of galectin-1 in chemokine production and proliferation through its beta-galactoside binding activity in activated PSCs.
    AJP Gastrointestinal and Liver Physiology 05/2006; 290(4):G729-36. DOI:10.1152/ajpgi.00511.2005 · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently developed a novel system for lectin microarray based on the evanescent-field fluorescence-detection principle, by which even weak lectin-oligosaccharide interactions are detectable without a washing procedure. For its practical application, cell glycan analysis was performed for Chinese hamster ovary (CHO) cells and their glycan profile was compared with those of their glycosylation-defective Lec mutants. Each of the cell surface extracts gave a significantly different profile from that of the parental CHO cells in a manner reflecting denoted biosynthetic features. Hence, the developed lectin microarray system is considered to be fully applicable for differential glycan profiling of crude samples.
    Journal of Biochemistry 04/2006; 139(3):323-7. DOI:10.1093/jb/mvj070 · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To establish a universal protocol for sequencing keratan sulfate (KS) using mass spectrometry (MS), systematic electrospray ionization-MSn fragmentation experiments were carried out for 10 KS-related oligosaccharides of defined structure. Under the experimental conditions employed, fully charged molecular-related ions were observed as dominant peaks in all MS(1) spectra, which clearly reflected the number of sulfates and sialic acids in the oligosaccharide structures. In the subsequent MS2, almost all of the oligosaccharides gave fragment ions corresponding to their dehydrated molecular-related ions as well as (0,2)A(r) scission ions (according to the nomenclature developed by Domon and Costello, where "r" represents the reducing end in this study). Further fragmentation of the (0,2)A(r) ions in MS3 predominantly yielded the corresponding (2,4)A(r) ions. Finally, in MS(4), these (2,4)A(r) ions were subjected to extensive glycosidic cleavage. Hence, the MS4 data of KS oligosaccharides provided sufficient information for their sequence determination. In addition, some important features of MSn fragmentation became evident. These findings should lead to the establishment of consensus rules applied for KS oligosaccharides, including those previously unidentified, and also accelerate functional studies on KS, i.e., KS-related glycosaminoglycomics.
    Analytical Chemistry 03/2006; 78(3):891-900. DOI:10.1021/ac051359e · 5.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carbohydrate specificity of three novel lectins, Boletopsis leucomelas lectin (BLL), Aralia cordate lectin (ACL), and Wasabia japonica lectin (WJL), was examined by frontal affinity chromatography using a panel of fluorescently labeled 47 oligosaccharides. The results indicate that BLL recognizes an agalacto structure of the biantennary chain and its bisecting structure. ACL showed strong affinity for triantennary oligosaccharides, but no affinity for tetraantennary structure. WJL showed no appreciable affinity for any of the 47 glycans examined. These lectins with a unique affinity specificity might be useful for examining alterations in the glycan structures of the glycoconjugates in association with development and various diseases.
    Bioscience Biotechnology and Biochemistry 03/2006; 70(2):542-5. DOI:10.1271/bbb.70.542 · 1.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to prepare a series of N-acetylheparosan (NAH)-related oligosaccharides, bacterial NAH produced in Escherichia coli strain K5 was partially depolymerized with heparitinase I into a mixture of even-numbered NAH oligosaccharides, having an unsaturated uronic acid (DeltaUA) at the non-reducing end. A mixture of odd-numbered oligosaccharides was derived by removing this DeltaUA in the aforementioned mixture by a 'trimming' reaction using mercury(II) acetate. Each oligosaccharide mixture was subjected to gel-filtration chromatography to generate a series of size-uniform NAH oligosaccharides of satisfactory purity (assessed by analytical anion-exchange HPLC), and their structures were identified by MALDITOF-MS, ESIMS, and 1H NMR analysis. As a result, a microscale preparation of a series of both even- and odd-numbered NAH oligosaccharides was achieved for the first time. The developed procedure is simple and systematic, and thus, should be valuable for providing not only research tools for heparin/heparan sulfate-specific enzymes and their binding proteins, but also precursor substrates with medical applications.
    Carbohydrate Research 03/2006; 341(2):230-7. DOI:10.1016/j.carres.2005.11.013 · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate protein-carbohydrate interactions in a comprehensive and high-throughput manner, carbohydrate biosensors including microarrays have recently attracted increased attention. In this context, carbohydrate and lectin microarrays are emerging as techniques to meet such requisites. However, most of these methods adopt a conventional immuno-detection system, which requires repetitive washing steps before detection. Since lectin-carbohydrate interactions are relatively weak compared with those between antigens and antibodies, a more precise analytical method, which does not require any washing step, is desirable. We describe here a novel platform for lectin microarray that enables direct observation of lectin-carbohydrate interactions under equilibrium conditions, on the basis of an evanescent-field fluorescence-assisted detection principle. This method allows the analysis of a panel of glycoproteins (glycopeptides) in an extremely sensitive manner. The system also allows real-time observation of lectin-glycoprotein interactions in an aqueous phase. No washing procedures are required, thus relatively weak interactions are detectable. The described lectin microarray is expected to be useful for various fields of glycomics requiring high-throughput analysis of not only purified glycoproteins but also of crude samples.
    Methods in Enzymology 02/2006; 415:341-51. DOI:10.1016/S0076-6879(06)15021-1 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Frontal affinity chromatography (FAC) is a quantitative method that enables sensitive and reproducible measurements of interactions between lectins and oligosaccharides. The method is suitable even for the measurement of low-affinity interactions and is based on a simple procedure and a clear principle. To achieve high-throughput and efficient analysis, an automated FAC system was developed. The system designated FAC-1 consists of two isocratic pumps, an autosampler, and a couple of miniature columns (bed volume, 31.4 microl) connected in parallel to either a fluorescence or an ultraviolet detector. By use of this parallel-column system, the time required for each analysis was reduced substantially. Under the established conditions, fewer than 10 hrs are required for 100 interaction analyses, consuming as little as 1 pmol pyridylaminated oligosaccharide for each analysis. This strategy for FAC should contribute to the construction of a lectin-oligosaccharide interaction database essential for future glycomics. Overall features and practical protocols for interaction analyses using FAC-1 are described.
    Methods in Enzymology 02/2006; 415:311-25. DOI:10.1016/S0076-6879(06)15019-3 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Jacalin, a lectin from the jackfruit Artocarpus integrifolia, has been known as a valuable tool for specific capturing of O-glycoproteins such as mucins and IgA1. Though its sugar-binding preference for T/Tn-antigens is well established, its detailed specificity has not been elucidated. In this study, we prepared a series of mucin-type glycopeptides using human glycosyltransferases, that is, ST6GalNAc1, Core1Gal-T1 and -T2, beta3Gn-T6, and Core2GnT1, and investigated their binding to immobilized Jacalin by frontal affinity chromatography (FAC). As a result, consistent with the previous observation, Jacalin showed high affinity for T-antigen (Core1) and Tn-antigen (alpha N-acetylgalactosamine)-attached peptides. Furthermore, we here show as novel findings that (1) Jacalin also showed significant affinity for Core3 and sialyl-T (ST)-attached peptides, but (2) Jacalin could not bind to Core2, Core6, and sialyl-Tn (STn)-attached peptides. The results were also confirmed by FAC using p-nitrophenyl (pNP)-derivatized saccharides. In conclusion, Jacalin binds to a GalNAcalpha1-peptide, in which C6-OH of alphaGalNAc is free (i.e., Core1, Tn, Core3, and ST), whereas it cannot recognize a GalNAcalpha1-peptide with a substitution at the C6 position (i.e., Core2, Core6, and STn). These findings provide useful information when applying jacalin for functional analysis of mucin-type glycoproteins and glycopeptides.
    Glycobiology 02/2006; 16(1):46-53. DOI:10.1093/glycob/cwj038 · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a useful procedure for the preparation of both even- and odd-numbered series of N-acetylheparosan (NAH) oligosaccharides was established. The present report describes findings when these NAH oligosaccharides were subjected to comparative mass spectrometry (MS)/MS fragmentation analysis by matrix-assisted laser desorption/ionization (MALDI)-LIFT-time-of-flight (TOF)/TOF-MS/MS, and electrospray ionization (ESI) collision-induced dissociation (CID) MS/MS. The resultant fragment ions were systematically assigned to elucidate fragmentation characteristics. In the MALDI-LIFT-MS/MS experiments, all the NAH oligosaccharides underwent unique glycosidic cleavages that included B-Y ion cleavages (nomenclature system of Domon and Costello, Glycoconjugate J. 1988; 5: 397) at the C-1 side, and C-Z ion cleavages at the C-4 side, with respect to glucuronic acid (GlcA). In addition, (0,2)A and/or (0,2)X cross-ring cleavages were observed for relatively small oligosaccharides. The former observation clearly reflects the occurrence of a GlcA-N-acetylglucosamine (GlcNAc) alternating structure of NAH, while the latter feature implies the occurrence of the -beta-1-4-glucuronide linkage. Extensive glycosidic cleavages were also observed in the ESI-CID-MS/MS fragmentation, though cleavage specificity was less evident than in the case of MALDI-LIFT-TOF/TOF-MS/MS. The information obtained in this study should be valuable for understanding both biosynthetic and degradation processes of NAH and its derivatives including heparin and heparan sulfate, as well as artificially modified NAH oligosaccharides.
    Rapid Communications in Mass Spectrometry 01/2006; 20(2):267-74. DOI:10.1002/rcm.2310 · 2.64 Impact Factor

Publication Stats

8k Citations
1,004.39 Total Impact Points

Institutions

  • 2005–2015
    • Kagawa University
      • • Life Science Research Center
      • • Division of Glyco-Bioindustry and Functional Glycomics
      Takamatu, Kagawa, Japan
  • 2003–2015
    • National Institute of Advanced Industrial Science and Technology
      • • Research Center for Stem Cell Engineering
      • • Research Center for Medical Glycoscience
      Tsukuba, Ibaraki, Japan
  • 2014
    • Kitasato University
      • Department of Marine Biosciences
      Edo, Tōkyō, Japan
  • 2013
    • Japan Advanced Institute of Science and Technology
      KMQ, Ishikawa, Japan
  • 2011
    • The University of Tokyo
      Tōkyō, Japan
  • 2008
    • Ludwig-Maximilians-University of Munich
      • Faculty of Veterinary Medicine
      München, Bavaria, Germany
  • 1984–2008
    • Teikyo University
      • Faculty of Pharmaceutical Sciences
      Edo, Tōkyō, Japan
  • 2006
    • Seikagaku Corporation
      Edo, Tōkyō, Japan
    • Saitama University
      • Faculty of Science
      Saitama, Saitama, Japan
    • Advance Institute of Science and Technology
      Dehra, Uttarakhand, India
  • 1998
    • Kyorin University
      • Department of Anatomy
      Edo, Tōkyō, Japan