Tyra G Wolfsberg

National Human Genome Research Institute, Maryland, United States

Are you Tyra G Wolfsberg?

Claim your profile

Publications (73)673.7 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantification of a transcriptional profile is a useful way to evaluate the activity of a cell at a given point in time. Although RNA-Seq has revolutionized transcriptional profiling, the costs of RNA-Seq are still significantly higher than microarrays, and often the depth of data delivered from RNA-Seq is in excess of what is needed for simple transcript quantification. Digital Gene Expression (DGE) is a cost-effective, sequence-based approach for simple transcript quantification: by sequencing one read per molecule of RNA, this technique can be used to efficiently count transcripts while obviating the need for transcript-length normalization and reducing the total numbers of reads necessary for accurate quantification. Here, we present trieFinder, a program specifically designed to rapidly map, parse, and annotate DGE tags of various lengths against cDNA and/or genomic sequence databases.
    BMC Bioinformatics 10/2014; 15(1):329. · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mnemiopsis leidyi is a ctenophore native to the coastal waters of the western Atlantic Ocean. A number of studies on Mnemiopsis have led to a better understanding of many key biological processes, and these studies have contributed to the emergence of Mnemiopsis as an important model for evolutionary and developmental studies. Recently, we sequenced, assembled, annotated, and performed a preliminary analysis on the 150-megabase genome of the ctenophore, Mnemiopsis. This sequencing effort has produced the first set of whole-genome sequencing data on any ctenophore species and is amongst the first wave of projects to sequence an animal genome de novo using solely next-generation sequencing technologies.Description: The Mnemiopsis Genome Project Portal (http://research.nhgri.nih.gov/mnemiopsis/) is intended both as a resource for obtaining genomic information on Mnemiopsis through an intuitive and easy-to-use interface and as a model for developing customized Web portals that enable access to genomic data. The scope of data available through this Portal goes well beyond the sequence data available through GenBank, providing key biological information not available elsewhere, such as pathway and protein domain analyses; it also features a customized genome browser for data visualization. We expect that the availability of these data will allow investigators to advance their own research projects aimed at understanding phylogenetic diversity and the evolution of proteins that play a fundamental role in metazoan development. The overall approach taken in the development of this Web site can serve as a viable model for disseminating data from whole-genome sequencing projects, framed in a way that best-serves the specific needs of the scientific community.
    BMC Genomics 04/2014; 15(1):316. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retroviruses integrate into the host genome in patterns specific to each virus. Understanding the causes of these patterns can provide insight into viral integration mechanisms, pathology and genome evolution, and is critical to the development of safe gene therapy vectors. We generated murine leukemia virus integrations in human HepG2 and K562 cells and subjected them to second-generation sequencing, using a DNA barcoding technique that allowed us to quantify independent integration events. We characterized >3 700 000 unique integration events in two ENCODE-characterized cell lines. We find that integrations were most highly enriched in a subset of strong enhancers and active promoters. In both cell types, approximately half the integrations were found in <2% of the genome, demonstrating genomic influences even narrower than previously believed. The integration pattern of murine leukemia virus appears to be largely driven by regions that have high enrichment for multiple marks of active chromatin; the combination of histone marks present was sufficient to explain why some strong enhancers were more prone to integration than others. The approach we used is applicable to analyzing the integration pattern of any exogenous element and could be a valuable preclinical screen to evaluate the safety of gene therapy vectors.
    Nucleic Acids Research 01/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Technological advances have greatly increased the availability of human genomic sequencing. However, the capacity to analyze genomic data in a clinically meaningful way lags behind the ability to generate such data. To help address this obstacle, we reviewed all conditions with genetic causes and constructed the Clinical Genomic Database (CGD) (http://research.nhgri.nih.gov/CGD/), a searchable, freely Web-accessible database of conditions based on the clinical utility of genetic diagnosis and the availability of specific medical interventions. The CGD currently includes a total of 2,616 genes organized clinically by affected organ systems and interventions (including preventive measures, disease surveillance, and medical or surgical interventions) that could be reasonably warranted by the identification of pathogenic mutations. To aid independent analysis and optimize new data incorporation, the CGD also includes all genetic conditions for which genetic knowledge may affect the selection of supportive care, informed medical decision-making, prognostic considerations, reproductive decisions, and allow avoidance of unnecessary testing, but for which specific interventions are not otherwise currently available. For each entry, the CGD includes the gene symbol, conditions, allelic conditions, clinical categorization (for both manifestations and interventions), mode of inheritance, affected age group, description of interventions/rationale, links to other complementary databases, including databases of variants and presumed pathogenic mutations, and links to PubMed references (>20,000). The CGD will be regularly maintained and updated to keep pace with scientific discovery. Further content-based expert opinions are actively solicited. Eventually, the CGD may assist the rapid curation of individual genomes as part of active medical care.
    Proceedings of the National Academy of Sciences 05/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the completion of zebrafish genome sequencing project, it becomes possible to analyze the function of zebrafish genes in a systematic way. The first step in such an analysis is to inactivate each protein-coding gene by targeted or random mutation. Here we describe a streamlined pipeline using proviral insertions coupled with high-throughput sequencing and mapping technologies to widely mutagenize genes in the zebrafish genome. We also report the first 6,144 mutagenized and archived F1s predicted to carry up to 3,776 mutations in annotated genes. Using in vitro fertilization, we have rescued and characterized roughly 0.5% of the predicted mutations, showing mutation efficacy and a variety of phenotypes relevant to both developmental processes and human genetic diseases. Mutagenized fish lines are being made freely available to the public through the Zebrafish International Resource Center. These fish lines establish an important milestone for zebrafish genetics research and should greatly facilitate systematic functional studies of the vertebrate genome.
    Genome Research 02/2013; · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.
    Science 01/2013; 342(6164). · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ZInC (Zebrafish Insertional Collection, http://research.nhgri.nih.gov/ZInC/) is a web-searchable interface of insertional mutants in zebrafish. Over the last two decades, the zebrafish has become a popular model organism for studying vertebrate development as well as for modeling human diseases. To facilitate such studies, we are generating a genome-wide knockout resource that targets every zebrafish protein-coding gene. We developed a streamlined pipeline utilizing retroviral-mediated insertional mutagenesis together with high-throughput sequencing and mapping technologies. This is an ongoing project and at present, we have mapped 15 223 unique insertions from 6144 mutagenized F(1) fish, generating 7896 integrations in genes with 3776 predicted mutations based on integration site. We will continue to generate mutations for several more years until the approach is saturated. All mutant fish are freely available to the scientific community through the Zebrafish International Resource Center (ZIRC). To assist researchers in finding mutant and insertion information, we developed a comprehensive database with a web front-end, the ZInC. It can be queried using multiple types of input such as ZFIN (Zebrafish Information Network) IDs, UniGene accession numbers and gene symbols from zebrafish, human and mouse. In the future, ZInC may include data from other insertional mutation projects as well. ZInC cross-references all integration data with the ZFIN (ZFIN.org).
    Nucleic Acids Research 11/2012; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus type 1 (HIV1) vectors poorly transduce rhesus hematopoietic cells due to species-specific restriction factors, including the tripartite motif-containing 5 isoformα (TRIM5α) which targets the HIV1 capsid. We previously developed a chimeric HIV1 (χHIV) vector system wherein the vector genome is packaged with the simian immunodeficiency virus (SIV) capsid for efficient transduction of both rhesus and human CD34(+) cells. To evaluate whether χHIV vectors could efficiently transduce rhesus hematopoietic repopulating cells, we performed a competitive repopulation assay in rhesus macaques, in which half of the CD34(+) cells were transduced with standard SIV vectors and the other half with χHIV vectors. As compared with SIV vectors, χHIV vectors achieved higher vector integration, and the transgene expression rates were two- to threefold higher in granulocytes and red blood cells and equivalent in lymphocytes and platelets for 2 years. A recipient of χHIV vector-only transduced cells reached up to 40% of transgene expression rates in granulocytes and lymphocytes and 20% in red blood cells. Similar to HIV1 and SIV vectors, χHIV vector frequently integrated into gene regions, especially into introns. In summary, our χHIV vector demonstrated efficient transduction for rhesus long-term repopulating cells, comparable with SIV vectors. This χHIV vector should allow preclinical testing of HIV1-based therapeutic vectors in large animal models.
    Molecular Therapy 08/2012; 20(10):1882-92. · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors (i.e., hair cells) (Corwin and Cotanche, 1988; Lombarte et al., 1993; Baird et al., 1996), but mammals possess only a very limited capacity for regeneration after birth (Roberson and Rubel, 1994). As a result, mammals experience permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates (Fritzsch et al., 2007), we chose to study hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique digital gene expression, which leverages the power of next-generation sequencing ('t Hoen et al., 2008). We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological inhibition of stat3 signaling accelerated hair cell regeneration without overproducing cells. Taking other published datasets into account (Sano et al., 1999; Schebesta et al., 2006; Dierssen et al., 2008; Riehle et al., 2008; Zhu et al., 2008; Qin et al., 2009), we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target for a broad application in tissue repair and injury healing.
    Journal of Neuroscience 08/2012; 32(31):10662-73. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5(+/m)) mice that were haploinsuffficient for Atad5. Atad5(+/m) mice displayed high levels of genomic instability in vivo, and Atad5(+/m) mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5(+/m) mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5(+/m) mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis.
    PLoS Genetics 08/2011; 7(8):e1002245. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adverse events linked to perturbations of cellular genes by vector insertion reported in gene therapy trials and animal models have prompted attempts to better understand the mechanisms directing viral vector integration. The integration profiles of vectors based on MLV, ASLV, SIV and HIV have all been shown to be non-random, and novel vectors with a safer integration pattern have been sought. Recently, we developed a producer cell line called CatPac that packages standard MoMLV vectors with feline leukemia virus (FeLV) gag, pol and env gene products. We now report the integration profile of this vector, asking if the FeLV integrase and capsid proteins could modify the MoMLV integration profile, potentially resulting in a less genotoxic pattern. We transduced rhesus macaque CD34+ hematopoietic progenitor cells with CatPac or standard MoMLV vectors, and determined their integration profile by LAM-PCR. We obtained 184 and 175 unique integration sites (ISs) respectively for CatPac and standard MoMLV vectors, and these were compared with 10 000 in silico-generated random IS. The integration profile for CatPac vector was similar to MoMLV and equally non-random, with a propensity for integration near transcription start sites and in highly dense gene regions. We found an IS for CatPac vector localized 715 nucleotides upstream of LMO-2, the gene involved in the acute lymphoblastic leukemia developed by X-SCID patients treated by gene therapy using MoMLV vectors. In conclusion, we found that replacement of MoMLV env, gag and pol gene products with FeLV did not alter the basic integration profile. Thus, there appears to be no safety advantage for this packaging system. However, considering the stability and efficacy of CatPac vectors, further development is warranted, using potentially safer vector backbones, for instance those with a SIN configuration.
    Gene therapy 06/2010; 17(6):799-804. · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Derivation of induced pluripotent stem (iPS) cells requires the expression of defined transcription factors (among Oct3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28) in the targeted cells. Lentiviral or standard retroviral gene transfer remains the most robust and commonly used approach. Low reprogramming frequency overall, and the higher efficiency of derivation utilizing integrating vectors compared to more recent nonviral approaches, suggests that gene activation or disruption via proviral integration sites (IS) may play a role in obtaining the pluripotent phenotype. We provide for the first time an extensive analysis of the lentiviral integration profile in human iPS cells. We identified a total of 78 independent IS in eight recently established iPS cell lines derived from either human fetal fibroblasts or newborn foreskin fibroblasts after lentiviral gene transfer of Oct4, Sox2, Nanog, and Lin28. The number of IS ranged from 5 to 15 IS per individual iPS clone, and 75 IS could be assigned to a unique chromosomal location. The different iPS clones had no IS in common. Expression analysis as well as extensive bioinformatic analysis did not reveal functional concordance of the lentiviral targeted genes between the different clones. Interestingly, in six of the eight iPS clones, some of the IS were found in pairs, integrated into the same chromosomal location within six base pairs of each other or in very close proximity. Our study supports recent reports that efficient reprogramming of human somatic cells is not dependent on insertional activation or deactivation of specific genes or gene classes.
    Stem Cells 02/2010; 28(4):687-94. · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the creation of a specialized web-accessible database named the Pigment Cell Gene Resource, which contains information on the genetic pathways that regulate pigment cell development and function. This manually curated database is comprised of two sections, an annotated literature section and an interactive transcriptional network diagram. Initially, this database focuses on the transcription factor SOX10, which has essential roles in pigment cell development and function, but the database has been designed with the capacity to expand in the future, allowing inclusion of many more pigmentation genes. Database URL: http://research.nhgri.nih.gov/pigment_cell/
    Database The Journal of Biological Databases and Curation 01/2010; 2010:baq025. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HPS is an autosomal recessive disorder characterized by oculocutaneous albinism and prolonged bleeding. Eight human genes are described resulting in the HPS subtypes 1-8. Certain HPS proteins combine to form Biogenesis of Lysosome-related Organelles Complexes (BLOCs), thought to function in the formation of intracellular vesicles such as melanosomes, platelet dense bodies, and lytic granules. Specifically, BLOC-2 contains the HPS3, HPS5 and HPS6 proteins. We used phylogenetic footprinting to identify conserved regions in the upstream sequences of HPS3, HPS5 and HPS6. These conserved regions were verified to have in vitro transcription activation activity using luciferase reporter assays. Transcription factor binding site analyses of the regions identified 52 putative sites shared by all three genes. When analysis was limited to the conserved footprints, seven binding sites were found shared among all three genes: Pax-5, AIRE, CACD, ZF5, Zic1, E2F and Churchill. The HPS3 conserved upstream region was sequenced in four patients with decreased fibroblast HPS3 RNA levels and only one HPS3 mutation in the coding exons and surrounding exon/intron boundaries; no mutation was found. These findings illustrate the power of phylogenetic footprinting for identifying potential regulatory regions in non-coding sequences and define the first putative promoter elements for any HPS genes.
    Annals of Human Genetics 08/2009; 73(Pt 4):422-8. · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that lentiviral vectors derived from the simian immunodeficiency virus (SIV) were efficient at transducing rhesus hematopoietic repopulating cells. To evaluate the persistence of vector-containing and -expressing cells long term, and the safety implications of SIV lentiviral vector-mediated gene transfer, we followed 3 rhesus macaques for more than 4 years after transplantation with transduced CD34+ cells. All 3 animals demonstrated significant vector marking and expression of the GFP transgene in T cells, B cells, and granulocytes, with mean GFP+ levels of 6.7% (range, 3.3%-13.0%), 7.4% (4.2%-13.4%), and 5.6% (3.1%-10.5%), respectively. There was no vector silencing in hematopoietic cells over time. Vector insertion site analysis of granulocytes demonstrated sustained highly polyclonal reconstitution, with no evidence for progression to oligoclonality. A significant number of clones were found to contribute at both 1-year and 3- or 4-year time points. No vector integrations were detected in the MDS1/EVI1 region, in contrast to our previous findings with a gamma-retroviral vector. These data show that lentiviral vectors can mediate stable and efficient long-term expression in the progeny of transduced hematopoietic stem cells, with an integration profile that may be safer than that of standard Moloney murine leukemia virus (MLV)-derived retroviral vectors.
    Blood 05/2009; 113(22):5434-43. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Suppressor of tumorigenicity 14 (St14) encodes matriptase, a serine protease, which regulates processing of profilaggrin to filaggin in vivo. Here, we report that transgenic mice with 1% of wild-type St14 levels (St14(hypo/-)) display aberrant processing of profilaggrin and model human ichthyotic skin phenotypes. Scaling of the skin appears at 1 week of age with underlying epidermal acanthosis and orthohyperkeratosis as well as a CD4+ T-cell dermal infiltrate. Upregulation of antimicrobial peptides occurs when challenged by exposure to the postnatal environment. Direct genomic sequencing of bacterial 16S rRNA genes to query microbial diversity identifies a significant shift in both phylogeny and community structure between St14(hypo/-) mice and control littermates. St14(hypo/-) mice have a selective shift in resident skin microbiota with a decrease of the dominant genus of skin bacteria, Pseudomonas and an accompanying increase of Corynebacterium and Streptococcus. St14(hypo/-) mice provide early evidence that the cutaneous microbiome can be specifically altered by genetic state, which may play an important role in modulating skin disease.
    Journal of Investigative Dermatology 05/2009; 129(10):2435-42. · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cross-species gene expression analyses using oligonucleotide microarrays designed to evaluate a single species can provide spurious results due to mismatches between the interrogated transcriptome and arrayed probes. Based on the most recent human and chimpanzee genome assemblies, we developed updated and accessible probe masking methods that allow human Affymetrix oligonucleotide microarrays to be used for robust genome-wide expression analyses in both species. In this process, only data from oligonucleotide probes predicted to have robust hybridization sensitivity and specificity for both transcriptomes are retained for analysis. To characterize the utility of this resource, we applied our mask protocols to existing expression data from brains, livers, hearts, testes, and kidneys derived from both species and determined the effects probe numbers have on expression scores of specific transcripts. In all five tissues, probe sets with decreasing numbers of probes showed non-linear trends towards increased variation in expression scores. The relationships between expression variation and probe number in brain data closely matched those observed in simulated expression data sets subjected to random probe masking. However, there is evidence that additional factors affect the observed relationships between gene expression scores and probe number in tissues such as liver and kidney. In parallel, we observed that decreasing the number of probes within probe sets lead to linear increases in both gained and lost inferences of differential cross-species expression in all five tissues, which will affect the interpretation of expression data subject to masking. We introduce a readily implemented and updated resource for human and chimpanzee transcriptome analysis through a commonly used microarray platform. Based on empirical observations derived from the analysis of five distinct data sets, we provide novel guidelines for the interpretation of masked data that take the number of probes present in a given probe set into consideration. These guidelines are applicable to other customized applications that involve masking data from specific subsets of probes.
    BMC Bioinformatics 02/2009; 10:77. · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression profile analysis clusters Gpnmb with known pigment genes, Tyrp1, Dct, and Si. During development, Gpnmb is expressed in a pattern similar to Mitf, Dct and Si with expression vastly reduced in Mitf mutant animals. Unlike Dct and Si, Gpnmb remains expressed in a discrete population of caudal melanoblasts in Sox10-deficient embryos. To understand the transcriptional regulation of Gpnmb we performed a whole genome annotation of 2,460,048 consensus MITF binding sites, and cross-referenced this with evolutionarily conserved genomic sequences at the GPNMB locus. One conserved element, GPNMB-MCS3, contained two MITF consensus sites, significantly increased luciferase activity in melanocytes and was sufficient to drive expression in melanoblasts in vivo. Deletion of the 5'-most MITF consensus site dramatically reduced enhancer activity indicating a significant role for this site in Gpnmb transcriptional regulation. Future analysis of the Gpnmb locus will provide insight into the transcriptional regulation of melanocytes, and Gpnmb expression can be used as a marker for analyzing melanocyte development and disease progression.
    Pigment Cell & Melanoma Research 12/2008; 22(1):99-110. · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sox10 is a dynamically regulated transcription factor gene that is essential for the development of neural crest-derived and oligodendroglial populations. Developmental genes often require multiple regulatory sequences that integrate discrete and overlapping functions to coordinate their expression. To identify Sox10 cis-regulatory elements, we integrated multiple model systems, including cell-based screens and transposon-mediated transgensis in zebrafish, to scrutinize mammalian conserved, noncoding genomic segments at the mouse Sox10 locus. We demonstrate that eight of 11 Sox10 genomic elements direct reporter gene expression in transgenic zebrafish similar to patterns observed in transgenic mice, despite an absence of observable sequence conservation between mice and zebrafish. Multiple segments direct expression in overlapping populations of neural crest derivatives and glial cells, ranging from pan-Sox10 and pan-neural crest regulatory control to the modulation of expression in subpopulations of Sox10-expressing cells, including developing melanocytes and Schwann cells. Several sequences demonstrate overlapping spatial control, yet direct expression in incompletely overlapping developmental intervals. We were able to partially explain neural crest expression patterns by the presence of head to head SoxE family binding sites within two of the elements. Moreover, we were able to use this transcription factor binding site signature to identify the corresponding zebrafish enhancers in the absence of overall sequence homology. We demonstrate the utility of zebrafish transgenesis as a high-fidelity surrogate in the dissection of mammalian gene regulation, especially those with dynamically controlled developmental expression.
    PLoS Genetics 10/2008; 4(9):e1000174. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The many layers and structures of the skin serve as elaborate hosts to microbes, including a diversity of commensal and pathogenic bacteria that contribute to both human health and disease. To determine the complexity and identity of the microbes inhabiting the skin, we sequenced bacterial 16S small-subunit ribosomal RNA genes isolated from the inner elbow of five healthy human subjects. This analysis revealed 113 operational taxonomic units (OTUs; "phylotypes") at the level of 97% similarity that belong to six bacterial divisions. To survey all depths of the skin, we sampled using three methods: swab, scrape, and punch biopsy. Proteobacteria dominated the skin microbiota at all depths of sampling. Interpersonal variation is approximately equal to intrapersonal variation when considering bacterial community membership and structure. Finally, we report strong similarities in the complexity and identity of mouse and human skin microbiota. This study of healthy human skin microbiota will serve to direct future research addressing the role of skin microbiota in health and disease, and metagenomic projects addressing the complex physiological interactions between the skin and the microbes that inhabit this environment.
    Genome Research 08/2008; 18(7):1043-50. · 14.40 Impact Factor

Publication Stats

5k Citations
673.70 Total Impact Points

Institutions

  • 1998–2013
    • National Human Genome Research Institute
      Maryland, United States
  • 1997–2006
    • National Institutes of Health
      • National Center for Biotechnology Information
      Maryland, United States
  • 1997–1999
    • National Center for Biotechnology Information
      Maryland, United States
  • 1996
    • University of Virginia
      • Department of Cell Biology
      Charlottesville, VA, United States
  • 1992–1995
    • University of California, San Francisco
      • Department of Biochemistry and Biophysics
      San Francisco, California, United States