Are you Qi Zhu?

Claim your profile

Publications (3)10.31 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Jasmonate (JA) inhibits root growth of Arabidopsis thaliana seedlings. The mutation in COI1 that plays a central role in JA signaling displays insensitivity to JA inhibition of root growth. To dissect JA signaling pathway, we recently isolated one mutant named psc1, which partially suppresses coi1 insensitivity to JA inhibition of root growth. As we identified the PSC1 gene as an allele of DWF4 that encodes a key enzyme in brassinosteroid (BR) biosynthesis, we hypothesized and demonstrated that BR is involved in JA signaling and negatively regulates JA inhibition of root growth. In our Plant Physiology paper, we analyzed effects of psc1 or exogenous BR on the inhibition of root growth by JA. Here we show that treatment with brassinazole (Brz), a BR biosynthesis inhibitor, increased JA sensitivity in both coi1-2 and wild type, which further confirms that BR negatively regulates JA inhibition of root growth. Since effects of psc1, Brz and exogenous BR on JA inhibition of root growth were mild, we suggests that BR negatively finely regulates JA inhibition of root growth in Arabidopsis.
    Plant signaling & behavior 02/2010; 5(2):140-2.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The F-box protein CORONATINE INSENSITIVE1 (COI1) plays a central role in jasmonate (JA) signaling and is required for all JA responses in Arabidopsis (Arabidopsis thaliana). To dissect JA signal transduction, we isolated the partially suppressing coi1 (psc1) mutant, which partially suppressed coi1 insensitivity to JA inhibition of root growth. The psc1 mutant partially restored JA sensitivity in coi1-2 background and displayed JA hypersensitivity in wild-type COI1 background. Genetic mapping, sequence analysis, and complementation tests revealed that psc1 is a leaky mutation of DWARF4 (DWF4) that encodes a key enzyme in brassinosteroid (BR) biosynthesis. Physiological analysis showed that an application of exogenous BR eliminated the partial restoration of JA sensitivity by psc1 in coi1-2 background and the JA hypersensitivity of psc1 in wild-type COI1 background. Exogenous BR also attenuated JA inhibition of root growth in the wild type. In addition, the expression of DWF4 was inhibited by JA, and this inhibition was dependent on COI1. These results indicate that (1) BR is involved in JA signaling and negatively regulates JA inhibition of root growth, and (2) the DWF4 is down-regulated by JA and is located downstream of COI1 in the JA-signaling pathway.
    Plant physiology 10/2009; 151(3):1412-20. · 6.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor WRKY70 was previously reported to be a common component in salicylic acid (SA) and jasmonate (JA) mediated signal pathways in Arabidopsis. Here, we present that the inactivation of the WRKY70 gene in wrky70-1 mutant does not alter the responses of both JA and SA, and that wrky70 mutation is unable to restore the coi1 mutant in JA responses. However, overexpression of WRKY70 reduces JA responses such as expression of JA-induced genes and JA-inhibitory root growth, and activates expression of SA-inducible PR1. These data indicate that the WRKY70 is important but not indispensable for JA and SA signaling, and that other regulators may display the redundant role with WRKY70 in modulation of JA and SA responses in Arabidopsis. Furthermore, we showed that JA inhibits expression of WRKY70 and PR1 by both COI1-dependent and COI1-independent pathways.
    Journal of Integrative Plant Biology 06/2008; 50(5):630-7. · 3.75 Impact Factor