Ivana De Domenico

University of Utah, Salt Lake City, UT, United States

Are you Ivana De Domenico?

Claim your profile

Publications (41)433.93 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagosomes are formed during autophagy, which is activated by hypoxia and starvation. Autophagy is important for mast cell degranulation. We hypothesized that autophagy is a key feature in the pathogenesis of systemic sclerosis (SSc). We examined SSc clinical features and mast cell density across the presence and severity of autophagy. Skin punch biopsy was performed on 33 SSc patients and 6 healthy controls (HC). Autophagy was evaluated by immunofluorescence on paraffin sections using LC3-FITC staining on these patients. The intensity of staining and mast cell density was examined across clinical features in 19 of the SSc patients. Presence of autophagosome formation was assessed by EM in 17 of the SSc patients and 4 HC. In our SSc study population, 29 of subjects were female and 23 were limited cutaneous. Twenty-nine of 33 SSc patients had autophagy by LC3-FITC staining. Intensity of staining decreased with longer duration of SSc (p = 0.09) and RP (p = 0.10). Bloating and distention differed across level of intensity staining (Wilcoxon signed-rank test, p = 0.05), with the greatest levels among those with moderate intensity. On EM, autophagosome formation was present in 16 of 17 SSc patients and no HC. All SSc patients had perivascular mast cells. Autophagy was present in 29 of 33 SSc patients, and none of our HC suggesting importance in pathogenesis. Autophagy staining was greater among those with shorter duration of SSc. Bloating and distention were higher in patients with moderate autophagy staining. Perivascular mast cells were present in all SSc patients. The role of autophagy in vasculopathy and mast cell activation in SSc warrants further studies.
    Rheumatology International 08/2013; · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages play a critical role at the crossroad between iron metabolism and immunity, being able to store and recycle iron derived from the phagocytosis of senescent erythrocytes. The way by which macrophages manage non-heme iron at physiological concentration is still not fully understood. We investigated protein changes in mouse bone marrow macrophages incubated with ferric ammonium citrate (FAC 10 μM iron). Differentially expressed spots were identified by nano RP-HPLC-ESI-MS/MS. Transcriptomic, metabolomics and western immunoblotting analyses complemented the proteomic approach. Pattern analysis was also used for identifying networks of proteins involved in iron homeostasis. FAC treatment resulted in higher abundance of several proteins including ferritins, cytoskeleton related proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) at the membrane level, vimentin, arginase, galectin-3 and macrophage migration inhibitory factor (MIF). Interestingly, GAPDH has been recently proposed to act as an alternative transferrin receptor for iron acquisition through internalization of the GAPDH-transferrin complex into the early endosomes. FAC treatment also induced the up-regulation of oxidative stress-related proteins (PRDX), which was further confirmed at the metabolic level (increase in GSSG, 8-isoprostane and pentose phosphate pathway intermediates) through mass spectrometry-based targeted metabolomics approaches. This study represents an example of the potential usefulness of "integarated omics" in the field of iron biology, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions. This article is part of a Special Issue entitled: "Integrated omics - functional applications to blood and blood therapeutics."
    Journal of proteomics 07/2012; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The iron exporter ferroportin (Fpn) is essential to transfer iron from cells to plasma. Systemic iron homeostasis in vertebrates is regulated by the hepcidin-mediated internalization of Fpn. Here, we demonstrate a second route for Fpn internalization; when cytosolic iron levels are low, Fpn is internalized in a hepcidin-independent manner dependent upon the E3 ubiquitin ligase Nedd4-2 and the Nedd4-2 binding protein Nfdip-1. Retention of cell-surface Fpn through reductions in Nedd4-2 results in cell death through depletion of cytosolic iron. Nedd4-2 is also required for internalization of Fpn in the absence of ferroxidase activity as well as for the entry of hepcidin-induced Fpn into the multivesicular body. C. elegans lacks hepcidin genes, and C. elegans Fpn expressed in mammalian cells is not internalized by hepcidin but is internalized in response to iron deprivation in a Nedd4-2-dependent manner, supporting the hypothesis that Nedd4-2-induced internalization of Fpn is evolutionarily conserved.
    Cell metabolism 11/2011; 14(5):635-46. · 17.35 Impact Factor
  • Ivana De Domenico, Diane McVey Ward, Jerry Kaplan
    [Show abstract] [Hide abstract]
    ABSTRACT: Systemic iron homeostasis is regulated by the interaction of the peptide hormone, hepcidin and the iron exporter, ferroportin. Mutations in FPN1, the gene that encodes ferroportin, result in iron-overload disease that shows dominant inheritance and variation in phenotype. The inheritance of ferroportin-linked disorders can be explained by the finding that ferroportin is a multimer and the product of the mutant allele participates in multimer formation. The nature of the ferroportin mutant can explain the variation in phenotype, which is due to either decreased iron export activity or decreased ability to be downregulated by hepcidin. Iron export through ferroportin is determined by the concentration of ferroportin in plasma membrane, which is the result of both synthetic and degradation events. Ferroportin degradation can occur by hepcidin-dependent and hepcidin-independent internalization. Ferroportin expression is regulated transcriptionally and posttranslationally.
    Seminars in Liver Disease 08/2011; 31(3):272-9. · 8.27 Impact Factor
  • Jerry Kaplan, Diane M Ward, Ivana De Domenico
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron homeostasis in vertebrates requires coordination between cells that export iron into plasma and those that utilize or store plasma iron. The coordination of iron acquisition and utilization is mediated by the interaction of the peptide hormone hepcidin and the iron exporter ferroportin. Hepcidin levels are increased during iron sufficiency and inflammation and are decreased in hypoxia or erythropoiesis. Hepcidin is a negative regulator of iron export. Hepcidin binds to cell surface ferroportin inducing ferroportin degradation and decreasing cellular iron export. Genetic disorders of iron overload of iron-linked anemia can be explained by changes in the level of hepcidin or ferroportin and of the ability of ferroportin to be internalized by hepcidin.
    International journal of hematology 01/2011; 93(1):14-20. · 1.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ferritin is a multisubunit protein that is responsible for storing and detoxifying cytosolic iron. Ferritin can be found in serum but is relatively iron poor. Serum ferritin occurs in iron overload disorders, in inflammation, and in the genetic disorder hyperferritinemia with cataracts. We show that ferritin secretion results when cellular ferritin synthesis occurs in the relative absence of free cytosolic iron. In yeast and mammalian cells, newly synthesized ferritin monomers can be translocated into the endoplasmic reticulum and transits through the secretory apparatus. Ferritin chains can be translocated into the endoplasmic reticulum in an in vitro translation and membrane insertion system. The insertion of ferritin monomers into the ER occurs under low-free-iron conditions, as iron will induce the assembly of ferritin. Secretion of ferritin chains provides a mechanism that limits ferritin nanocage assembly and ferritin-mediated iron sequestration in the absence of the translational inhibition of ferritin synthesis.
    Cell metabolism 01/2011; 13(1):57-67. · 17.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ferroportin (Fpn) is the only known iron exporter in vertebrate cells and plays a critical role in iron homeostasis regulating cytosolic iron levels and exporting iron to plasma. Ferroportin1 (FPN1) expression can be transcriptionally regulated by iron as well as other transition metals. Fpn can also be posttranslationally regulated by hepcidin-mediated internalization and degradation. We demonstrate that zinc and cadmium induce FPN1 transcription through the action of Metal Transcription Factor-1 (MTF-1). These transition metals induce MTF-1 translocation into the nucleus. Zinc leads to MTF-1 binding to the FPN1 promoter, while iron does not. Silencing of MTF-1 reduces FPN1 transcription in response to zinc but not in response to iron. The mouse FPN1 promoter contains 2 MTF-1 binding sites and mutation of those sites affects the zinc and cadmium-dependent expression of a FPN1 promoter reporter construct. We demonstrate that Fpn can transport zinc and can protect zinc sensitive cells from high zinc toxicity.
    Blood 11/2010; 116(22):4657-64. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepcidin is a peptide hormone that regulates iron homeostasis and acts as an antimicrobial peptide. It is expressed and secreted by a variety of cell types in response to iron loading and inflammation. Hepcidin mediates iron homeostasis by binding to the iron exporter ferroportin, inducing its internalization and degradation via activation of the protein kinase Jak2 and the subsequent phosphorylation of ferroportin. Here we have shown that hepcidin-activated Jak2 also phosphorylates the transcription factor Stat3, resulting in a transcriptional response. Hepcidin treatment of ferroportin-expressing mouse macrophages showed changes in mRNA expression levels of a wide variety of genes. The changes in transcript levels for half of these genes were a direct effect of hepcidin, as shown by cycloheximide insensitivity, and dependent on the presence of Stat3. Hepcidin-mediated transcriptional changes modulated LPS-induced transcription in both cultured macrophages and in vivo mouse models, as demonstrated by suppression of IL-6 and TNF-alpha transcript and secreted protein. Hepcidin-mediated transcription in mice also suppressed toxicity and morbidity due to single doses of LPS, poly(I:C), and turpentine, which is used to model chronic inflammatory disease. Most notably, we demonstrated that hepcidin pretreatment protected mice from a lethal dose of LPS and that hepcidin-knockout mice could be rescued from LPS toxicity by injection of hepcidin. The results of our study suggest a new function for hepcidin in modulating acute inflammatory responses.
    The Journal of clinical investigation 07/2010; 120(7):2395-405. · 15.39 Impact Factor
  • Ivana De Domenico, James P Kushner
    Gastroenterology 07/2010; 139(1):25-7. · 12.82 Impact Factor
  • Ivana De Domenico, Eric Lo, Diane M Ward, Jerry Kaplan
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the iron exporter ferroportin (Fpn) result in iron overload in macrophages or hepatocytes depending upon the mutation. Patients with Fpn mutation D157G show high serum ferritin and normal to slightly elevated transferrin saturation. Here, we show that Fpn(D157G)-green fluorescent protein (GFP) is down-regulated independent of hepcidin, and that this down-regulation is due to the constitutive binding of Jak2 and Fpn phosphorylation. Expression of Fpn(D157G)-GFP in Danio rerio results in a severe growth defect, which can be rescued by iron supplementation. These results identify a hepcidin-independent regulation of Fpn that can result in alterations in iron homeostasis.
    Blood 04/2010; 115(14):2956-9. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary hemochromatosis is caused by mutations in the hereditary hemochromatosis protein (HFE), transferrin-receptor 2 (TfR2), hemojuvelin, hepcidin, or ferroportin genes. Hepcidin is a key iron regulator, which is secreted by the liver, and decreases serum iron levels by causing the down-regulation of the iron transporter, ferroportin. Mutations in either HFE or TfR2 lower hepcidin levels, implying that both HFE and TfR2 are necessary for regulation of hepcidin expression. In this study, we used a recombinant adeno-associated virus, AAV2/8, for hepatocyte-specific expression of either Hfe or Tfr2 in mice. Expression of Hfe in Hfe-null mice both increased Hfe and hepcidin mRNA and lowered hepatic iron and Tf saturation. Expression of Tfr2 in Tfr2-deficient mice had a similar effect, whereas expression of Hfe in Tfr2-deficient mice or of Tfr2 in Hfe-null mice had no effect on liver or serum iron levels. Expression of Hfe in wild-type mice increased hepcidin mRNA and lowered iron levels. In contrast, expression of Tfr2 had no effect on wild-type mice. These findings suggest that Hfe is limiting in formation of the Hfe/Tfr2 complex that regulates hepcidin expression. In addition, these studies show that the use of recombinant AAV vector to deliver genes is a promising approach for studying physiologic consequences of protein complexes.
    Blood 02/2010; 115(16):3374-81. · 9.78 Impact Factor
  • Ivana De Domenico, Diane McVey Ward, Jerry Kaplan
    Autophagy 01/2010; 6(1):157. · 12.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycoplasma arthritidis causes arthritis in specific mouse strains. M. arthritidis mitogen (MAM), a superantigen produced by M. arthritidis, activates T cells by forming a complex between the major histocompatability complex II on antigen presenting cells and the T cell receptor on CD4+ T lymphocytes. The MAM superantigen is also known to interact with Toll-like receptors (TLR) 2 and 4. Hepcidin, an iron regulator protein, is upregulated by TLR4, IL-6, and IL-1. In this study, we evaluated serum hepcidin, transferrin saturation, ferritin, IL-6, IL-1, and hemoglobin levels in M. arthritidis injected C3H/HeJ (TLR2+/+, TLR4-/-) mice and C3H/HeSnJ (TLR2+/+, TLR4+/+) mice over a 21 day period. C3H/HeJ mice have a defective TLR4 and an inability to produce IL-6. We also measured arthritis severity in these mice and the amount of hepcidin transcripts produced by the liver and spleen. C3H/HeJ mice developed a more severe arthritis than that of C3H/HeSnJ mice. Both mice had an increase in serum hepcidin within three days after infection. Hepcidin levels were greater in C3H/HeJ mice despite a nonfunctioning TLR4 and low serum levels of IL-6. Splenic hepcidin production in C3H/HeJ mice was delayed compared to C3H/HeSnJ mice. Unlike C3H/HeSnJ mice, C3H/HeJ mice did not develop a significant rise in serum IL-6 levels but did develop a significant increase in IL-1beta during the first ten days after injection. Both mice had an increase in serum ferritin but a decrease in serum transferrin saturation. In conclusion, serum hepcidin regulation in C3H/HeJ mice does not appear to be solely dependent upon TLR4 or IL-6.
    Journal of Inflammation 11/2009; 6:33. · 2.55 Impact Factor
  • Ivana De Domenico, Jerry Kaplan
    [Show abstract] [Hide abstract]
    ABSTRACT: The unfolded protein response (UPR) coordinates translational and transcriptional changes triggered by unfolded proteins within the endoplasmic reticulum. Two recent papers (Oliveira et al., 2009; Vecchi et al., 2009) show that the UPR modulates transcription of the hormone hepcidin, which controls plasma iron levels and perhaps innate immunity.
    Cell metabolism 10/2009; 10(4):245-6. · 17.35 Impact Factor
  • Ivana De Domenico, Diane McVey Ward, Jerry Kaplan
    [Show abstract] [Hide abstract]
    ABSTRACT: Deferoxamine (DFO) is a high-affinity Fe (III) chelator produced by Streptomyces pilosus. DFO is used clinically to remove iron from patients with iron overload disorders. Orally administered DFO cannot be absorbed, and therefore it must be injected. Here we show that DFO induces ferritin degradation in lysosomes through induction of autophagy. DFO-treated cells show cytosolic accumulation of LC3B, a critical protein involved in autophagosomal-lysosomal degradation. Treatment of cells with the oral iron chelators deferriprone and desferasirox did not show accumulation of LC3B, and degradation of ferritin occurred through the proteasome. Incubation of DFO-treated cells with 3-methyladenine, an autophagy inhibitor, resulted in degradation of ferritin by the proteasome. These results indicate that ferritin degradation occurs by 2 routes: a DFO-induced entry of ferritin into lysosomes and a cytosolic route in which iron is extracted from ferritin before degradation by the proteasome.
    Blood 09/2009; 114(20):4546-51. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepcidin is the major regulator of systemic iron homeostasis in mammals. Hepcidin is produced mainly by the liver and is increased by inflammation, leading to hypoferremia. We measured serum levels of bioactive hepcidin and its effects on serum iron levels in mice infected with Borrelia burgdorferi. Bioactive hepcidin was elevated in the serum of mice resulting in hypoferremia. Infected mice produced hepcidin in both liver and spleen. Both intact and sonicated B burgdorferi induced hepcidin expression in cultured mouse bone marrrow macrophages. Hepcidin production by cultured macrophages represents a primary transcriptional response stimulated by B burgdorferi and not a secondary consequence of cytokine elaboration. Hepcidin expression induced by B burgdorferi was mediated primarily by activation of Toll-like receptor 2.
    Blood 08/2009; 114(9):1913-8. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction between the hormone hepcidin and the iron exporter ferroportin (Fpn) regulates plasma iron concentrations. Hepcidin binds to Fpn and induces its internalization and degradation, resulting in decreased iron efflux from cells into plasma. Fpn mutations in N144, Y64N, and C326 residue cause autosomal dominant disease with parenchymal iron overload, apparently due to the resistance of mutant Fpn to hepcidin-mediated internalization. To define the mechanism of resistance, we generated human Fpn constructs bearing the pathogenic mutations. The mutants localized to the cell surface and exported iron normally, but were partially or completely resistant to hepcidin-mediated internalization and continued to export iron despite the presence of hepcidin. The primary defect with exofacial C326 substitutions was the loss of hepcidin binding, which resulted in the most severe phenotype. The thiol form of C326 was essential for interaction with hepcidin, suggesting that C326-SH homology is located in or near the binding site of hepcidin. In contrast, N144 and Y64 residues were not required for hepcidin binding, but their mutations impaired the subsequent internalization of the ligand-receptor complex. Our observations explain why the mutations in C326 Fpn residue produce a severe form of hemochromatosis with iron overload at an early age.
    Blood 05/2009; 114(2):437-43. · 9.78 Impact Factor
  • Source
    Ivana De Domenico, Diane McVey Ward, Jerry Kaplan
    Proceedings of the National Academy of Sciences 03/2009; 106(6):1683-4. · 9.81 Impact Factor
  • Source
    Ivana De Domenico, Eric Lo, Diane M Ward, Jerry Kaplan
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepcidin is a hormone secreted in response to iron loading and inflammation. Hepcidin binds to the iron exporter ferroportin, inducing its degradation and thus preventing iron entry into plasma. We determined that hepcidin binding to ferroportin leads to the binding and activation of the protein Janus Kinase2 (Jak2), which is required for phosphorylation of ferroportin. Ferroportin is a dimer and both monomers must be capable of binding hepcidin for Jak2 to bind to ferroportin. Once Jak2 is bound to the ferroportin dimer, both ferroportin monomers must be functionally competent to activate Jak2 and for ferroportin to be phosphorylated. These results show that cooperativity between the ferroportin monomers is required for hepcidin-mediated Jak2 activation and ferroportin down-regulation. These results provide a molecular explanation for the dominant inheritance of hepcidin resistant iron overload disease.
    Proceedings of the National Academy of Sciences 03/2009; 106(10):3800-5. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver peptide hepcidin regulates body iron, is upregulated in iron overload and inflammation, and is downregulated in iron deficiency/hypoxia. The transmembrane serine protease matriptase-2 (TMPRSS6) inhibits the hepcidin response and its mutational inactivation causes iron-deficient anemia in mice and humans. Here we confirm the inhibitory effect of matriptase-2 on hepcidin promoter; we show that matriptase-2 lacking the serine protease domain, identified in the anemic Mask mouse (matriptase-2(MASK)), is fully inactive and that mutant R774C found in patients with genetic iron deficiency has decreased inhibitory activity. Matriptase-2 cleaves hemojuvelin (HJV), a regulator of hepcidin, on plasma membrane; matriptase-2(MASK) shows no cleavage activity and the human mutant only partial cleavage capacity. Matriptase-2 interacts with HJV through the ectodomain since the interaction is conserved in matriptase-2(MASK). The expression of matriptase-2 mutants in zebrafish results in anemia, confirming the matriptase-2 role in iron metabolism and its interaction with HJV.
    Cell metabolism 11/2008; 8(6):502-11. · 17.35 Impact Factor

Publication Stats

2k Citations
433.93 Total Impact Points

Institutions

  • 2006–2011
    • University of Utah
      • • Department of Internal Medicine
      • • Department of Pathology
      Salt Lake City, UT, United States
  • 2007
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 2005–2006
    • Università degli Studi di Messina
      Messina, Sicily, Italy