Tim Jones

Cardiff University, Cardiff, Wales, United Kingdom

Are you Tim Jones?

Claim your profile

Publications (27)62.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to particulate air pollution is associated with an increased risk of cardiovascular disease. The mechanism by which exposure increases risk is poorly understood but could involve changes in the flow properties of blood.OBJECTIVE: The aim of this investigation was to assess the effect, in rats, of intratracheal instillation of particulate air pollution on leukocyte flow properties by measurement of polymorphonucleocyte (PMN) and monocyte actin polymerisation.METHODS: Rats were exposed to particulate air pollution by intratracheal instillation of PM10. Blood was collected from test and control animals at 3 days (n=10) and 6 weeks (n=10) after dust instillation. Partial differential leukocyte counts were performed. The intracellular F-actin content of blood PMNs and monocytes was determined by staining with FITC-phalloidin and flow cytometric determination of mean florescence intensity (MFI).RESULTS: There were no significant changes in PMN MFI (p=0.369, ANOVA) or cell counts (p=0.753, ANOVA). There was a significant increase in monocyte MFI (p=0.004, ANOVA) and a decrease in monocyte cell count (p=0.003, ANOVA) in instilled rats.CONCLUSIONS: Intratracheal instillation of air pollution particles resulted in an increase in blood monocyte actin polymerisation, which may cause trapping of monocytes. This could be a mechanism by which exposure to air pollution increases the risk of cardiovascular disease.
    Biorheology 10/2014; · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the toxicity of nanoparticles under relevant conditions, it is important to reproducibly disperse nanoparticles in biological media in in vitro and in vivo studies. Here, single-walled nanotubes (SWNTs) and double-walled nanotubes (DWNTs) were physicochemically and biologically characterized when dispersed in phosphate-buffered saline (PBS) and bovine serum albumin (BSA). BSA-SWNT/DWNT interaction resulted in a reduction of aggregation and an increase in particle stabilization. Based on the protein sequence coverage and protein binding results, DWNTs exhibited higher protein binding than SWNTs. SWNT and DWNT suspensions in the presence of BSA increased interleukin-6 (IL-6) levels and reduced tumor necrosis factor-alpha (TNF-α) levels in A549 cells as compared to corresponding samples in the absence of BSA. We next determined the effects of SWNTs and DWNTs on pulmonary protein modification using bronchoalveolar lavage fluid (BALF) as a surrogate collected form BALB/c mice. The BALF proteins bound to SWNTs (13 proteins) and DWNTs (11 proteins), suggesting that these proteins were associated with blood coagulation pathways. Lastly, we demonstrated the importance of physicochemical and biological alterations of SWNTs and DWNTs when dispersed in biological media, since protein binding may result in the misinterpretation of in vitro results and the activation of protein-regulated biological responses.
    Journal of Hazardous Materials. 01/2014; 280:216–225.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chemical analysis of 553 school playground and classroom PM2.5 filters collected during the BREATHE sampling campaign in Barcelona, Spain, reveals a remarkable degree of spatial and temporal variability in ambient PM composition. Classroom air quality shows average PM2.5 concentrations of 37 μg m−3 (28% higher than outdoors), with much of this mass comprising carbon (including abundant cotton fibres), blackboard chalk particles and silicates. Where sandy playgrounds are present these exert a major influence on inhalable PM2.5 concentrations both indoors and outdoors. Throughout the city there is widespread contamination by metalliferous traffic particles, especially at schools located close to major urban highways where outdoor EC levels can be an order of magnitude higher than in peripheral, green belt schools. Penetration into the classroom of outdoor EC, ammonium sulphate and anthropogenic metals such as Cu, Sn, Sb, Zn and V is pervasive, especially during warmer months. In contrast, levels of nitrate and ammonium are much higher outdoors than in the classroom, especially during winter. During their work and play, schoolchildren across the city respire in a diversity of chemically differing atmospheric microenvironments.
    Atmospheric Environment. 01/2014; 91:162–171.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A considerable amount of studies have been conducted to investigate the interactions of biological fluids with nanoparticle surfaces, which exhibit a high affinity for proteins and particles. However, the mechanisms underlying these interactions have not been elucidated, particularly as they relate to human health. Using bovine serum albumin (BSA) and mice bronchoalveolar lavage fluid (BALF) as models for protein-particle conjugates, we characterized the physicochemical modifications of carbon blacks (CB) with 23nm or 65nm in diameter after protein treatment. Adsorbed BALF-containing proteins were quantified and identified by pathways, biological analyses and protein classification. Significant modifications of the physicochemistry of CB were induced by the addition of BSA. Enzyme modulators and hydrolase predominately interacted with CB, with protein-to-CB interactions that were associated with the coagulation pathways. Additionally, our results revealed that an acute-phase response could be activated by these proteins. With regard to human health, the present study revealed that the CB can react with proteins (∼55kDa and 70kDa) after inhalation and may modify the functional structures of lung proteins, leading to the activation of acute-inflammatory responses in the lungs.
    Journal of hazardous materials 11/2013; 264C:127-135. · 4.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies have suggested that combustion-derived smoke, such as that produced during incense burning, is a deleterious air pollutant. It is capable of initiating oxidative stress and mutation; however, the related apoptotic processes remain unclear. In order to elucidate the biological mechanisms of reactive oxygen species (ROS)-induced respiratory toxicology, alveolar epithelial A549 cells were exposed to incense particulate matter (PM), with and without antioxidant N-acetyl-L-cysteine (NAC). The cross-linking associations between oxidative capacity, cell cycle events, actin cytoskeletal dynamics and intra-cellular calcium signals were investigated. An incense PM suspension caused significant oxidative stress in A549 cells, as shown by inhibition of the cell cycle at G1 and G2/M check-points, and the induction of apoptosis at Sub-G1. At the same time, alterations in the F-actin filamentous assemblies were observed. The levels of intracellular Ca(2+) were increased after incense PM exposure. Antioxidant NAC treatment revealed that oxidative stress and F-actin remodelling was significantly mitigated. This suggests that ROS accumulation could alter cell cycle regulation and anomalous remodelling of the cortical cytoskeleton that allowed impaired cells to enter into apoptosis. This study has elucidated the integral patho-physiological interactions of incense PM and the potential mechanisms for the development of ROS-driven respiratory impairment.
    Toxicology Letters 05/2013; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of aerosols during combustion plays an important role in allowing released products to interreact, leading to an increase in particulate matter oxidative potential. This study investigated the physicochemistry of incense combustion-derived pollutants, which were emitted into the ambient air as solid and gas phases, followed by the determination of their oxidative potential. Upon combustion of a joss stick, approximately 60% of the mass of incense raw ingredients was released into the ambient air as combustion products including 349.51 mg/g PM10, 145.48 mg/g CO and 0.16 mg/g NOx. Furthermore, incense combustion produced significant number of primary particles (<50 nm) at 0.99 × 105 1/h. The NOx generated during incense combustion was able to react with CaCO3 to produce the final product of Ca(NO3)2 in the ambient air. Moreover, coagulation could be a vital process for the growth of primary incense combustion particles through the intermixing with volatile organics. The incense particle
    Journal of Hazardous Materials 01/2013; 244–245:142-150. · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: Exposure to ambient particulate air pollution is associated with increased cardiovascular and respiratory morbidity and mortality. It is necessary to understand causal pathways driving the observed health effects, particularly if they are differentially associated with particle size. Objectives: To investigate the effect of different size ranges of ambient particulate matter (PM) on gene and protein expression in an in vitro model. Materials and methods: Normal human tracheobronchial epithelium (NHTBE) three-dimensional cell constructs were exposed for 24 h to washed ambient PM of different sizes (size 1: 7-615 nm; size 2: 616 nm-2.39 µm; size 3: 2.4-10 µm) collected from a residential street. A human stress and toxicity PCR array was used to investigate gene expression and iTRAQ was used to perform quantitative proteomics. Results: Eighteen different genes of the 84 on the PCR array were significantly dysregulated. Treatment with size 2 PM resulted in the greatest number of genes with altered expression, followed by size 1 and lastly size 3. ITRAQ identified 317 proteins, revealing 20 that were differentially expressed. Enrichment for gene ontology classification revealed potential changes to various pathways. Discussion and conclusions: Different size fractions of ambient PM are associated with dysregulatory effects on the cellular proteome and on stress and toxicity genes of NHTBE cells. This approach not only provides an investigative tool to identify possible causal pathways but also permits the relationship between particle size and responses to be explored.
    Inhalation Toxicology 12/2012; 24(14):966-975. · 1.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urban aerosol samples collected in Barcelona between 2008 and 2009 were toxicologically characterised by means of two complementary methodologies allowing evaluation of their Reactive Oxidative Stress (ROS)-generating capacity: the plasmid scission assay (PSA) and the dichlorodihydrofluorescin assay (DCFH). The PSA determined the PM dose able to damage 50% of a plasmid DNA molecule (TD(50) values), an indication of the ability of the sample to exert potential oxidative stress, most likely by formation of ·OH. This toxicity indicator did not show dependency on different air mass origins (African dust, Atlantic advection), indicating that local pollutant sources within or near the city are most likely to be mainly responsible for PM health effect variations. The average TD(50) values show PM(2.5-0.1) samples to be more toxic than the PM(10-2.5) fraction, with doses similar to those reported in previous studies in polluted urban areas. In addition, the samples were also evaluated using the oxidant-sensitive probe DCFH confirming the positive association between the amount of DNA damage and the generation of reactive oxidant species capable of inducing DNA strand break. Results provided by the PSA were compared with those from two other different methodologies to evaluate human health risk: (1) the toxicity of particulate PAHs expressed as the calculated toxicity equivalent of benzo[a]pyrene (BaPteq) after application of the EPA toxicity factors, and (2) the cancer risk assessment of the different PM sources detected in Barcelona with the receptor model Positive Matrix Factorisation (PMF) and the computer programme Multilinear Engine 2 (ME-2) using the organic and inorganic chemical compositions of particles. No positive associations were found between PSA and the toxicity of PAHs, probably due to the inefficiency of water in extracting organic compounds. On the other hand, the sum of cancer risk estimates calculated for each of the selected days for the PSA was found to correlate with TD(50) values in the fine fraction, with fuel oil combustion and industrial emissions therefore being most implicated in negative health effects. Further studies are necessary to determine whether toxicity is related to PM chemical composition and sources, or rather to its size distribution.
    Ecotoxicology and Environmental Safety 12/2011; 78:327-35. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA.
    Environmental Pollution 09/2011; 159(12):3324-33. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Burning candles and incense generate particulate matter (PM) that produces poor indoor air quality and may cause human pulmonary problems. This study physically characterised combustion particles collected in a church during services. In addition, the emissions from five types of candles and two types of incense were investigated using a combustion chamber. The plasmid scission assay was used to determine the oxidative capacities of these church particles. The corresponding risk factor (CRf) was derived from the emission factor (Ef) and the oxidative DNA damage, and used to evaluate the relative respiratory exposure risks. Real-time PM measurements in the church during candle-incense burning services showed that the levels (91.6 μg/m(3) for PM(10); 38.9 μg/m(3) for PM(2.5)) exceeded the European Union (EU) air quality guidelines. The combustion chamber testing, using the same environmental conditions, showed that the incense Ef for both PM(10) (490.6-587.9 mg/g) and PM(2.5) (290.1-417.2 mg/g) exceeded that of candles; particularly the PM(2.5) emissions. These CRf results suggested that the exposure to significant amounts of incense PM could result in a higher risk of oxidative DNA adducts (27.4-32.8 times) than tobacco PM. The generation and subsequent inhalation of PM during church activities may therefore pose significant risks in terms of respiratory health effects.
    Environment international 08/2011; 40:137-42. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography-mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations.
    Analytical and Bioanalytical Chemistry 07/2011; 401(10):3095-102. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background / Purpose: Exposure to particulate air pollution is associated with an increased cardiovascular risk but the mechanisms involved are poorly understood. The aim of this investigation was to assess the effect, in rats, of intratracheal instillation of particulate air pollution on leucocyte activation and damage to the vascular endothelium.There was an increase in monocyte F-actin and a decrease in monocyte cell count. Plasma neutrophil elastase increased. There was an increase in two markers of endothelial damage, vWF and sICAM-1. Main conclusion: Lung exposure to particulate air pollution causes systemic inflammation, leading to activation of blood leucocytes. Activation of leucocytes and endothelium results in increased adhesion and trapping of leucocytes. The inflammatory changes observed persist long after the initial instillation event. Exposure to even short term episodes of high levels of particulate air pollution could cause systemic inflammatory changes which increase the risk of developing cardiovascular risk.
    Physiology 2010 meeting published in Proc Physiol Soc 19; PC183; 07/2010
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urban air particulate matter (PM) has previously been associated with a variety of adverse health effects. It is now believed that the smallest particles, ultrafine or nanoparticles, are linked to the greatest health effects. The physicochemistry of these particles is likely to provide information regarding their toxicity. Therefore, the aim of this study was to further the understanding of the heterogeneous and changing particle concentrations in urban air, in conjunction with gaining an understanding of the physicochemistry of the particles. A Dekati electrical low-pressure impactor was used to collect the particles and real-time data in a busy traffic corridor in Swansea, Wales, over a period of 10 nonconsecutive weeks. Particle concentrations in the street canyon were analyzed and particle physicochemistries investigated using a variety of techniques. Particle number concentrations were found to vary both diurnally and from day to day in the traffic corridor. Of all particles, the nano to fine size fraction was consistently identified in the highest concentrations (maximum: 140,000 particles cm(-3)). Particle physicochemistry was found to vary as a function of size, with larger particles exhibiting a greater variety of morphologies (and consequently particle types) and associated metals.
    Journal of Toxicology and Environmental Health Part A 01/2010; 73(5):355-67. · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The term "technogenic particles" is used to describe airborne particulate matter (PM) produced during industrial processes. The most common of these is "fly ash" produced during combustion of solid and liquid fossil fuels. Coal fly ash is derived from the mineral and metal contaminants within coal in which particles (1) are distinctly spherical in shape, (2) are composed of 60-90% glass, and (3) often contain a range of contaminant metals. In addition, particles may contain recrystallized minerals, mainly quartz, mullite, and hematite; both quartz and mullite are recognized respiratory hazards. Fly ash particles from both UK and Chinese coal-burning power stations were characterized by field emission-scanning electron microscopy (morphology and size), x-ray diffraction (crystallinity and minerals), and inductively coupled plasma-mass spectroscopy (elemental composition). PM(10) samples were separated from bulk fly ash by a dry dust separator system. The plasmid scission assay (PSA) was used to measure damage produced by fly ash to plasmid bacteriophage PhiX174 RF DNA. The supercoiled DNA was either damaged or severely damaged by reactive oxygen species (ROS) generated by the fly ash at different concentrations. Geochemical analyses confirmed that the fly ash particles are predominantly glass, with a minor component of the minerals quartz, hematite, and mullite. Fly ash particles also contained a range of metals contaminants; however, these were mostly bound into the glass with only a small proportion potentially bioaccessible. PSA data showed that fly ash exhibited significant oxidative capacity when compared to negative control (MB H(2)O), indicating that ROS are likely to be the driving force underlying fly ash bioreactivity.
    Journal of Toxicology and Environmental Health Part A 01/2010; 73(5):341-54. · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The issue of domestic waste is recognised as one of the most serious environmental problems facing the nation. With the UK producing 35 million tonnes of municipal solid waste per annum, an understanding of the ranges of toxicity of landfill emissions is crucial to determine the degree of concern we should have about the potential effects these waste sites could have upon nearby populations and the surrounding environment. The aim of this study was to evaluate the bioreactivity of landfill leachates in terms of their capacity to damage ROS-sensitive bacteriophage plasmid DNA and induce toxicity in a commercial photobacterium toxicity assay, based on the light emission of Vibrio fischeri bacteria (ROTAS). The bacterial assay revealed widespread biostimulation and a hormesis response in the bacteria, with alpha-, beta- and gamma-response curves observed following exposure to the different landfill leachates. Different biological mechanisms lead to variations in bioreactivity, as seen in the plasmid DNA scission and ROTAS assays.
    Water Research 05/2008; 42(8-9):2177-83. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the UK producing 400 million tonnes of waste each year, the problem of waste disposal is recognised as one of the most serious environmental problems facing the nation. Of this, over 35 million tonnes is municipal waste, largely derived from households, but also includes some commercial and industrial waste. There are strong national and international concerns about the possible adverse health effects of living in the vicinity of municipal waste landfills. An understanding of the ranges of toxicity of landfill emissions is crucial to determine the degree of concern we should have about the potential effects they could have upon nearby populations and the surrounding environment. Leachates from three different types of landfills have been collected and screened for their potential to induce toxicity. Bioreactivity was measured by a plasmid DNA scission assay (PSA), and 2',7'-dichlorodihydrofluorescin fluorescence (DCFH). The results indicate that leachates cause damage to plasmid DNA in a dose-dependent manner and that toxicity varies between different types of landfills as well as within individual waste sites. Overall, the data implies that the complex chemistry involved in leachate formation has yet to be delineated in terms of the toxicological response.
    Science of The Total Environment 11/2007; 384(1-3):171-81. · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. The general term 'nanoparticle' (NP) is used to define any particle less than 100 nm in at least one dimension and NPs are generally classified as natural, anthropogenic or engineered in origin. Anthropogenic, also referred to as 'ultrafine' particles (UFPs), are predominately combustion derived and are characterized by having an equivalent spherical diameter less than 100 nm. 2. These particles, considered to be 'combustion-derived nanoparticles' (CDNPs), are of toxicological interest given their nanosized dimensions, with properties not displayed by their macroscopic counterparts. 3. The pulmonary deposition efficiency of inhaled UFPs, along with their large surface areas and bound transition metals, is considered important in driving the emerging health effects linked to respiratory toxicity. 4. The toxicology of CDNPs is currently used to predict the health outcomes in humans following exposure to manufactured NPs. Their similar physicochemistry would suggest similar adverse health effects (i.e. pulmonary (and perhaps cardiac) toxicity). As such, it is essential to fully understand CDNP nanotoxicology in order to minimize occupational and environmental exposure.
    Clinical and Experimental Pharmacology and Physiology 11/2007; 34(10):1044-50. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a method which improves the determination of geometric parameters of unicellular organisms with prolate ellipsoid geometry, such as Dunaliella. Approximately determined axis lenghts were obtained from transmission electron micrographs of ultrathin sections of microalgae. The density functions generated by these ‘axis lengths’ have poles which can be used to determine the short half axis length and ratio of axis lengths of the ellipsoid in order to determine the true cell volume.
    Biometrical Journal 01/2007; 38(8):907 - 920. · 1.15 Impact Factor
  • Journal of Aerosol Science - J AEROSOL SCI. 01/2007; 38(1):136-138.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A study was undertaken to determine the use of a plasmid DNA scission assay to evaluate the causal relationships between particle oxidative capacity and physico-chemistry. Field emission scanning electron microscopy (FESEM), image analysis (IA) and inductively coupled plasma-mass spectrometry (ICP-MS) were employed to investigate the physico-chemical characteristics of indoor PM10 (particulate matter with an aerodynamic diameter of 10 μm or less) in Beijing, China. Six PM10 samples (indoor smoker's living room; indoor non-smoker's living room and kitchen; and outdoor Beijing city; winter versus summer) were selected to represent typical indoor Beijing PM10 environments that contain high particle mass. The PM10 collected from a kitchen and two smoker's homes had the lowest TD50 (toxic dosage of PM10 causing 50% plasmid DNA damage), being as low as 45 μg ml−1 (kitchen) and 100 μg ml−1 (living room), which suggests a high oxidative capacity, with the PM10 generated in kitchens appearing to be the most toxic. The indoor PM10 from the non-smoker's home and outdoor PM10 samples demonstrated high TD50 values and were deemed less bioreactive (i.e. caused limited DNA damage). FESEM observations revealed that four types of particle species were prevalent in Beijing indoor PM10; soot aggregates, minerals, coal fly ash and unknown fine particles. IA showed that higher percentages of soot and unknown fine particles were associated with the lower TD50 values, suggesting that soot and the unknown fine particles may be important components responsible for the observed plasmid DNA damage. The water-soluble trace elements were negatively correlated with the TD50 values, implying that the DNA damage may be attributed to the water-soluble fraction of the PM10. Water-soluble zinc revealed the best relationship with the TD50 values than other analyzed elements, signifying it may play a role in driving the oxidative damage.
    Atmospheric Environment. 01/2007;

Publication Stats

258 Citations
62.76 Total Impact Points

Institutions

  • 2002–2014
    • Cardiff University
      • • School of Earth and Ocean Sciences
      • • School of Biosciences
      Cardiff, Wales, United Kingdom
  • 2013
    • Taipei Medical University
      T’ai-pei, Taipei, Taiwan
  • 2007
    • University of Wales
      Cardiff, Wales, United Kingdom
  • 2004
    • Spanish National Research Council
      • Institute of Earth Sciences Jaume Almera
      Madrid, Madrid, Spain