Tae Sub Park

Seoul National University, Sŏul, Seoul, South Korea

Are you Tae Sub Park?

Claim your profile

Publications (36)123.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Genes, RNAs, and proteins play important roles during germline development. However, the functions of non-coding RNAs (ncRNAs) on germline development remain unclear in avian species. Recent high-throughput techniques have identified several classes of ncRNAs, including micro RNAs (miRNAs), small-interfering RNAs (siRNAs), and PIWI-interacting RNAs (piRNAs). These ncRNAs are functionally important in the genome, however, the identification and annotation of ncRNAs in a genome is challenging. The aim of this study was to identify different types of small ncRNAs particularly piRNAs, and the role of piRNA pathway genes in the protection of chicken primordial germ cells (PGCs).
    BMC genomics. 09/2014; 15(1):757.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The P-element-induced wimpy testis (PIWI) protein, which associates with small non-coding RNAs, is responsible for maintaining the integrity of germ cells and stem cells. Thus, transcriptional regulation of PIWI is critical for its effective functional modulation. In this study, we identified the promoter region of the PIWI homolog in chicken (CIWI), and investigated the transcriptional regulatory elements that control expression of CIWI in chicken primordial germ cells (PGCs). We constructed a vector that included the enhanced green fluorescent protein (eGFP) gene controlled by the 4-kb CIWI promoter. The vector was expressed in chicken PGCs, but not in chicken embryonic fibroblasts. Based on promoter deletion and fragmentation assays, we found that a 252-bp fragment of the CIWI promoter (−577 to −326 bp) was crucial for CIWI expression in PGCs. A CCAAT transcriptional regulatory element (−498 to −494 bp) was detected in the proximal region from the transcription initiation site of CIWI, and mutational analysis confirmed that this element regulates transcriptional initiation in chicken PGCs. Interestingly, the regions flanking the CCAAT element, which are positioned differently in HIWI (human), Miwi (mouse), and CIWI orthologs, were highly conserved. In addition, we predicted that specificity protein 1 (SP1) motifs modulate the transcriptional initiation of CIWI by binding to the 5'-flanking regions of the CCAAT box. Overall, 252 bp of the CIWI promoter possessing the transcriptional regulatory element CCAAT is crucial for regulating CIWI gene expression in chicken PGCs. This promoter may be applicable for the regulation of CIWI expression during germ-cell development. Mol. Reprod. Dev. © 2014 Wiley Periodicals, Inc.
    Molecular Reproduction and Development 09/2014; · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetically modified animals are used for industrial applications as well as scientific research, and studies on these animals contribute to a better understanding of biological mechanisms. Gene targeting techniques have been developed to edit specific gene loci in the genome, but the conventional strategy of homologous recombination with a gene-targeted vector has low efficiency and many technical complications. Here, we generated specific gene knockout chickens through the use of transcription activator-like effector nuclease (TALEN)-mediated gene targeting. In this study, we accomplished targeted knockout of the ovalbumin (OV) gene in the chicken primordial germ cells, and OV gene mutant offspring were generated through test-cross analysis. TALENs successfully induced nucleotide deletion mutations of ORF shifts, resulting in loss of chicken OV gene function. Our results demonstrate that the TALEN technique used in the chicken primordial germ cell line is a powerful strategy to create specific genome-edited chickens safely for practical applications.
    Proceedings of the National Academy of Sciences of the United States of America. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose phosphate isomerase (GPI) involves in the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate in glucose pathways. Since glucose metabolism is crucial for the proliferation and differentiation of embryonic stem and germ cells, reducing GPI expression may affect the characteristic features of these cells. MicroRNAs (miRNAs) have been shown to regulate genes. In this study, we investigated the regulation of chicken GPI by its predicted miRNAs. We determined the expression patterns of seven GPI 3'-untranslated region (GPI 3'UTR) targeting miRNAs, including the gga-miR-302, gga-miR-106, gga-miR-17-5p and gga-miR-20 clusters in chicken primordial germ cells (PGCs) compared with GPI mRNA. Among the miRNAs, gga-miR-302b, gga-miR-302d and gga-miR-17-5p were expressed lower than the expression of GPI. Remaining four miRNAs were expressed higher than the expression of GPI. Then, we cotransfected four candidate miRNAs gga-miR-302b, gga-miR-106, gga-miR-17-5p and gga-miR-20a, respectively with GPI 3'UTR into 293FT cells by dual fluorescence reporter assay. Overexpression of gga-miR-302b and gga-miR-17-5p in 293FT cells significantly downregulated GPI expression, whereas the other two miRNAs had no effect. Then, knockdown and overexpression of these four candidate miRNAs were performed by RNA interference assay to regulate GPI in PGCs. In the RNA interference assay, the expression of GPI was greatly regulated by gga-miR-302b and gga-miR-17-5p. Finally, we examined the effects of GPI regulation on PGCs proliferation and migration. Our results suggested that the regulation of GPI by gga-miR-302b and gga-miR-17-5p affects PGCs proliferation. However, regulation of GPI using these two miRNAs does not affect the migration of PGCs into embryonic gonads.
    Biology of Reproduction 07/2013; · 4.03 Impact Factor
  • Source
    Tae Sub Park, Jae Yong Han
    [Show abstract] [Hide abstract]
    ABSTRACT: Germ cell differentiation in reverse-sexed reproductive organs and interspecies germ line chimeras provides insight into the mechanism of germ cell development and represents a useful tool for conservation of endangered birds. We investigated the migration and survival capacity of male chicken primordial germ cells (PGCs) in female chicken embryos and in quail and Korean ring-necked pheasant embryos of both sexes. Interestingly, the PGCs were successfully reintroduced in all cases. Furthermore, the cells survived in the recipient gonads until hatching regardless of sex and species of the recipient. In the case of male recipient chickens, PGC-derived offspring were produced. However, the reverse-sexed female chickens, quails and pheasants of both sexes did not generate any male donor PGC-derived progeny. These results suggest that migration and survival circuits in chicken PGCs are conserved in both sexes and between avian species during embryonic development.
    Journal of Reproduction and Development 02/2013; · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was undertaken to elucidate detailed event of early embryogenesis in chicken embryos using a noninvasive egg retrieval technique before oviposition. White Leghorn intrauterine eggs were retrieved from 95 cyclic hens aged up to 54-56 weeks and morphogenetic observation was made under both bright field and fluorescent image in a time course manner. Differing from mammals, asymmetric cleavage to yield preblastodermal cells was observed throughout early embryogenesis. The first two divisions occurred synchronously and four polarized preblastodermal cells resulted after cruciform cleavage. Then, asynchronous cleavage continued in a radial manner and overall cell size in the initial cleavage region was smaller than that in the distal area. Numerous sperms were visible, regardless of zygotic nuclei formation. Condensed sperm heads were present mainly in the perivitelline space and cytoplasm, and rarely in the yolk region, while decondensed sperm heads were only visible in the yolk. In conclusion, apparent differences in sperm dynamics and early cleavage events compared with mammalian embryos were detected in chick embryo development, which demonstrated polarized cleavage with penetrating supernumerary sperm into multiple regions.
    PLoS ONE 01/2013; 8(11):e80631. · 3.53 Impact Factor
  • Source
    Tae Sub Park, Kyung Soo Kang, Jae Yong Han
    [Show abstract] [Hide abstract]
    ABSTRACT: The chicken was domesticated from Red Jungle Fowl over 8,000 years ago and became one of the major food sources worldwide. At present, the poultry industry is one of the largest industrial animal stocks in the world, and its economic scale is expanding significantly with increasing consumption. Additionally, since Aristotle used chicken eggs as a model to provide remarkable insights into how life begins, chickens have been used as invaluable and powerful experimental materials for studying embryo development, immune systems, biomedical processes, and hormonal regulation. Combined with advancements in efficient transgenic technology, avian models have become even more important than would have been expected.
    General and Comparative Endocrinology 12/2012; · 2.82 Impact Factor
  • Source
    Tae Sub Park, Jae Yong Han
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past two decades numerous reports have demonstrated that the genetic modification of poultry genomes has great potential for improving poultry production; moreover, it may be used as a powerful tool for the production of industrial proteins. To date, transgenic techniques have been established for generating transgenic birds that express recombinant human proteins in hen eggs, as well as tissue-specific genes as an animal model. The production of transgenic birds is a promising approach that could have practical applications in agriculture and biopharmacology, in addition to advancing our understanding of avian biology. Finally, germ cell-mediated transgenesis could provide a more efficient strategy for creating gene-targeted insertions and deletions in avian species.
    Annals of the New York Academy of Sciences 10/2012; 1271:104-9. · 4.38 Impact Factor
  • Source
    Tae Sub Park, Jae Yong Han
    [Show abstract] [Hide abstract]
    ABSTRACT: Transgenic birds embody one of the most potent and exciting research tools in biotechnology for agriculture, medicine, and model animals. To date, retrovirus- or lentivirus-mediated transgenesis has been established in chickens and quail. However, despite having a valid technique for viral transduction to achieve transgenic birds, many obstacles exist for practical applications because of relatively low and variable rates of germ-line transmission and transgenic offspring showing transgene silencing, as well as safety issues related to viral vector use. Thus, the generation of transgenic poultry by nonviral integration is a prerequisite for the introduction of biotechnology to practical applications. Herein, we show that a germ-line-competent chicken primordial germ-cell (PGC) line was established with high efficiency of transmission to offspring and that piggyBac transposition into PGCs improved the efficiency of transgenic chicken production and led to high-level transgene expression. GFP transgene-expressing donor PGC-transferred recipient chickens produced donor-derived progenies, and the germ-line transmission efficiency of donor PGCs was 95.2% on average. Subsequently, half of the donor-derived offspring (52.2%) were transgenic chicks because GFP-expressing donor PGCs, in which a transgene was inserted into one chromosome 20, were heterozygous. In all of the transgenic chickens, GFP expression was constant and strong, regardless of age. Our results demonstrate that piggyBac transposition into the chicken PGC line could be the surest way to generate transgenic chickens safely for practical applications.
    Proceedings of the National Academy of Sciences 05/2012; 109(24):9337-41. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chicken oviductal epithelium produces large quantities of egg white protein in daily cycles. In this study, we cultured and characterized oviductal epithelial cells (OECs) from juvenile (10-wk-old) chickens and from actively laying (30-wk-old) hens. The juvenile OECs were maintained over passage 25 and were positive for toluidine blue, lectin-ConA, HPA, UEA-1, WFA, WGA, anti-OVA, anti-ESR1, and anti-PGR, whereas the adult OECs were cultured over passage 6 and were positive for toluidine blue, periodic acid-Schiff, lectin-ConA, WFA, WGA, anti-OVA, anti-ESR1, and anti-PGR. To investigate the optimal concentration of steroid hormones for inducing egg white protein genes in vitro, we examined the effects of estrogen, diethylstilbestrol, progesterone, and corticosterone on OECs. Results showed that oviduct-specific levels of avidin, ovalbumin, ovomucin, lysozyme, ESR1, and PGR gene expression were significantly elevated in steroid hormone-treated OECs compared with those of untreated cells (P < 0.05). Ovalbumin protein was also secreted into culture medium from hormone-treated OECs. In addition, to examine the application of OECs for avian transgenesis, we introduced human thrombopoietin (THPO)-expressing lentiviral vector controlled by a 3.5-kb ovalbumin promoter into cultured OECs, and THPO expression was significantly induced with diethylstilbestrol or progesterone in juvenile OECs (P < 0.05) and in adult OECs (P < 0.05). In conclusion, these data demonstrate the potential of cultured OECs as a model system for providing a better understanding of the regulation of gene expression and for the production of an avian transgenic bioreactor.
    Biology of Reproduction 06/2011; 85(4):798-807. · 4.03 Impact Factor
  • Source
    Biology of Reproduction 06/2011; · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) play a critical role in determining the differentiation fate of pluripotent stem cells and germ cells in mammals. However, the mechanism(s) of miRNA-mediated posttranscriptional regulation with regard to lineage specification and differentiation in chick development require further investigation. Therefore, we conducted miRNA expression profiling to explore specific miRNA signatures in undifferentiated blastoderm and primordial germ cells (PGCs). We identified seven miRNAs that are highly expressed in blastoderm and 10 that are highly expressed in PGCs. In this study, miR-302a and miR-456 for blastoderm and miR-181a* for PGCs were analyzed further for their target transcripts and regulatory pathways. Both miR-302a and miR-456 bound directly to the sex-determining region Y box 11 transcript and could act as posttranscriptional coregulators to maintain the undifferentiated state of the chicken blastoderm through the suppression of somatic gene expression and differentiation. Moreover, miR-181a* showed a bifunctional role in PGCs by binding to two different transcripts. miR-181a* inhibited the somatic differentiation of PGCs by silencing homeobox A1 expression. Additionally, miR-181a* prevented PGCs from entering meiosis through the repression of the nuclear receptor subfamily 6, group A, member 1 transcript. Collectively, our data demonstrate that in chickens miRNAs intrinsically regulate the differentiation fate of blastoderms and PGCs and that the specific timing of germ cell meiosis is controlled through miRNA expression.
    Proceedings of the National Academy of Sciences 06/2011; 108(26):10426-31. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although chicken oviduct is a useful model and target tissue for reproductive biology and transgenesis, little is known because of the highly specific hormonal regulation and the lack of fundamental researches, including lectin-binding activities and glycobiology. Because lectin is attached to secreted glycoproteins, we hypothesized that lectin could be bound to secretory egg-white proteins, and played a crucial role in the generation of egg-white protein in the oviduct. Hence, the purpose of this study was to investigate the structural, histological and lectin-binding characteristics of the chicken oviductal magnum from juvenile and adult hens. The oviductal magnums from juvenile and adult hens were prepared for ultrastructural analysis, qRT-PCR and immunostaining. Immunohistochemistry of anti-ovalbumin, anti-ESR1 and anti-PGR, and mRNA expression of egg-white genes and steroid hormone receptor genes were evaluated. Lectin histochemical staining was also conducted in juvenile and adult oviductal magnum tissues. The ultrastructural analysis showed that ciliated cells were rarely developed on luminal surface in juvenile magnum, but not tubular gland cells. In adult magnum, two types of epithelium and three types of tubular gland cells were observed. qRT-PCR analysis showed that egg-white genes were highly expressed in adult oviduct compared with the juvenile. However, mRNA expressions of ESR1 and PGR were considerably higher in juvenile oviduct than adult (P < 0.05). The immunohistochemical analysis showed that anti-ovalbumin antibody was detected in adult oviduct not in juvenile, unlikely anti-ESR1 and anti-PGR antibodies that were stained in both oviducts. In histological analysis, Toluidine blue was stained in juvenile and adult oviductal epithelia, and adult tubular glands located in the outer layer of oviductal magnum. In contrast, PAS was positive only in adult oviductal tubular gland. Lectins were selectively bound to oviductal epithelium, stroma, and tubular gland cells. Particularly, lectin-ConA and WGA were bound to electron-dense secretory granules in tubular gland. The observation of ultrastructural analysis, mRNA expression, immunohistochemistry and lectin staining showed structural and physiological characterization of juvenile and adult oviductal magnum. Consequently, oviduct study could be helped to in vitro culture of chicken oviductal cells, to develop epithelial or tubular gland cell-specific markers, and to understand female reproductive biology and endocrinology.
    Reproductive Biology and Endocrinology 01/2011; 9:62. · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of genetically modified germ cells is an ideal system to induce transgenesis in birds; the primordial germ cell (PGC) is the most promising candidate for this system. In the present study, we confirmed the practical application of this system using lentivirus-transduced chicken gonadal PGCs (gPGCs). Embryonic gonads were collected from 5.5-d old Korean Oge chickens (black feathers). The gPGC population was enriched (magnetic-activated cell sorting technique) and then they were transduced with a lentiviral vector expressing enhanced green fluorescent protein (eGFP), under the control of the Rous sarcoma virus (RSV) promoter. Subsequently, the eGFP-transduced PGCs were transplanted into blood vessels of 2.5-d-old embryonic White Leghorn (white feathers). Among 21 germline chimeric chickens, one male produced transgenic offspring (G(1) generation), as demonstrated by testcross and genetic analysis. A homozygous line was produced and maintained through the G(3) generation. Based on serum biochemistry, there were no significant physiological differences between G(3) homozygotes and non-transgenic chickens. However, since eGFP transgene expression in G(3) chickens varied among tissues, it was further characterized by Western blotting and ELISA. Furthermore, there were indications that DNA methylation may have affected tissue-specific expression of transgenes in chickens. In conclusion, the PGC-mediated approach used may be an efficient tool for avian transgenesis, and transgenic chickens could provide a useful model for investigating regulation of gene expression.
    Theriogenology 09/2010; 74(5):805-16.e1. · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oviduct-specific expression of heterologous recombinant proteins in transgenic birds is a promising technology for the large-scale production of therapeutic proteins in eggs. We describe the production of recombinant human interleukin 1 receptor antagonist (rhIL1RN) in the eggs of transgenic quails. To drive tissue-specific expression of rhIL1RN, a 1.35-kb fragment of the chicken ovalbumin promoter, which contains both the steroid-dependent regulatory element and the negative regulatory element, was used. A transgenic quail was generated by microinjection of a concentrated stock of lentivirus into stage X blastodermal cells. A single copy of the transgene was integrated into the seventh intron of the gene for conserved oligomeric golgi complex protein 5 (COG5) on chromosome 1. As expected, rhIL1RN expression was restricted to oviductal tissue, and the amount of protein deposited in the eggs of homozygous transgenic quails ranged from 88.7 to 233.8 ng/ml. Transgene expression was conserved from the G(1) generation to the G(4) generation, and there was no evidence of transgene silencing. In a bioassay using the EL4.NOB-1/CTLL-2 coculture system, no significant difference was observed between the egg-produced rhIL1RN and a commercially available rhIL1RN (anakinra).
    Biology of Reproduction 02/2010; 82(6):1057-64. · 4.03 Impact Factor
  • Source
    Journal of Poultry Science - J POULT SCI. 01/2010; 47(3):197-207.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term maintenance of avian primordial germ cells (PGCs) in vitro has tremendous potential because it can be used to deepen our understanding of the biology of PGCs. A transgenic bioreactor based on the unique migration of PGCs toward the recipients' sex cord via the bloodstream and thereby creating a germline chimeric bird has many potential applications. However, the growth factors and the signaling pathway essential for inducing proliferation of chicken PGCs are unknown. Therefore, we conducted this study to investigate the effects of various combinations of growth factors on the survival and proliferation of PGCs under feeder-free conditions. We observed proliferation of PGCs in media containing bFGF. Subsequent characterization confirmed that the cultured PGCs maintained expression of PGC-specific markers, telomerase activity, normal migrational activity, and germline transmission. We also found that bFGF activates the mitogen-activated protein kinase kinase/extracellular-signal regulated kinase (MEK/ERK) signaling. Also, the expression of 133 transcripts was reversibly altered by bFGF withdrawal. Our results demonstrate that chicken PGCs can be maintained in vitro without any differentiation or dedifferentiation in feeder free culture conditions, and subsequent analysis revealed that bFGF is one of the key factors that enable proliferation of chicken PGCs via MEK/ERK signaling regulating downstream genes that may be important for PGC proliferation and survival.
    PLoS ONE 01/2010; 5(9):e12968. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated gonadal migration and postmigratory proliferation of intact and genetically modified chicken primordial germ cells (PGCs). A randomized, controlled trial was conducted with the gonadal population of PGCs and transgenic chicken production as major parameters. PGCs (0, 90, 900, 1800, or 3000 cells) were transferred into 53-h-old embryos. The percentage of PGCs migrating on Day 6 of development was highest (35.8%) following the transfer of 900 PGCs and did not change with increases in transferred PGCs. The number of migrating PGCs gradually increased (P = 0.0001) as the number of transferred PGCs was increased. Gonadal migration was detected after the transfer of intact and genetically modified PGCs, but prominent decreases in PGC migration (from 21.9% to 0.38%) and chimera ratio (from 0.4 to 0.007) occurred with genetically modified PGCs. However, subsequent vigorous proliferation of the modified PGCs (3.67-fold increase from transferred number) led to the derivation of a germline chimera and produced a transgenic hatchling. In conclusion, the number of migrating PGCs increased as the number of transferred cells increased. Vigorous proliferation after transfer compensated for the decreased migration capacity of genetically modified PGCs and resulted in the production of a transgenic chicken.
    Biology of Reproduction 09/2009; 82(2):257-62. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The derivation of germ cells from human embryonic stem cells (hESCs) or human induced pluripotent stem (hIPS) cells represents a desirable experimental model and potential strategy for treating infertility. In the current study, we developed a triple biomarker assay for identifying and isolating human primordial germ cells (PGCs) by first evaluating human PGC formation during the first trimester in vivo. Next, we applied this technology to characterizing in vitro derived PGCs (iPGCs) from pluripotent cells. Our results show that codifferentiation of hESCs on human fetal gonadal stromal cells significantly improves the efficiency of generating iPGCs. Furthermore, the efficiency was comparable between various pluripotent cell lines regardless of origin from the inner cell mass of human blastocysts (hESCs), or reprogramming of human skin fibroblasts (hIPS). To better characterize the iPGCs, we performed Real-time polymerase chain reaction, microarray, and bisulfite sequencing. Our results show that iPGCs at day 7 of differentiation are transcriptionally distinct from the somatic cells, expressing genes associated with pluripotency and germ cell development while repressing genes associated with somatic differentiation (specifically multiple HOX genes). Using bisulfite sequencing, we show that iPGCs initiate imprint erasure from differentially methylated imprinted regions by day 7 of differentiation. However, iPGCs derived from hIPS cells do not initiate imprint erasure as efficiently. In conclusion, our results indicate that triple positive iPGCs derived from pluripotent cells differentiated on hFGS cells correspond to committed first trimester germ cells (before 9 weeks) that have initiated the process of imprint erasure.
    Stem Cells 02/2009; 27(4):783-95. · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A previous report from our laboratory documented successful production of quail (Coturnix japonica) germline chimeras by transfer of gonadal primordial germ cells (gPGCs). Subsequently, this study was designed to evaluate whether gPGCs can be maintained in vitro for extended period, and furthermore, these cultured PGCs can induce germline transmission after transfer into recipient embryos. In experiment 1, gonadal cells from the two strains (wild-type plumage (WP) and black (D) quail) were cultured in vitro for 10 days. Using antibody QCR1, we detected a continuous, significant (P = 0.0002) increase in the number of WP, but not D, PGCs. QCR1-positive WP colonies began to form after 7 days in culture. On Day 10 of culture, 803 WP PGCs were present as a result of a continuous increase, whereas no D PGC colonies could be detected and the D gonadal stroma cells were rolled up. Differences in the PGCs or the gonadal stroma cells of the two different strains might account for these differences. In experiment 2, WP PGC colonies were maintained in vitro up to Day 20 of culture, and 10- or 20-day-cultured PGCs were microinjected into dorsal aortas of 181 recipient D embryos. Thirty-five (19.3%) of the transplanted embryos hatched after incubation, and 25 (71.4%) of the hatchlings reached sexual maturity. Testcrossing of the sexually mature hatchlings resulted in three (10 days, 33.3%) and eight (20 days, 50.0%) germline chimeras respectively. This report is the first to describe successful production of germline chimera by transfer of in vitro-cultured gPGCs in quail.
    Molecular Reproduction and Development 03/2008; 75(2):274-81. · 2.81 Impact Factor

Publication Stats

552 Citations
123.30 Total Impact Points

Institutions

  • 1997–2014
    • Seoul National University
      • • Department of Agricultural Biotechnology
      • • College of Agriculture and Life Sciences
      • • Department of Food and Animal Biotechnology
      Sŏul, Seoul, South Korea
  • 2009–2010
    • Optifarm Solution Inc.,
      Sŏul, Seoul, South Korea
    • University of California, Los Angeles
      • Department of Molecular, Cell, and Developmental Biology (MCDB)
      Los Angeles, CA, United States