Are you Ulrike Hilscher?

Claim your profile

Publications (5)36.91 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the effects of kyphoplasty on pain and mobility in patients with osteoporosis and painful vertebral fractures compared with conventional medical management. Pharmacological treatment of patients with primary osteoporosis does not prevent pain and impaired activity of patients with painful vertebral fractures. Therefore, we evaluated the clinical outcome after kyphoplasty in patients with vertebral fractures and associated chronic pain for >12 months. Sixty patients with primary osteoporosis and painful vertebral fractures presenting for >12 months were included in this prospective, nonrandomized controlled study. Twenty-four hours before performing kyphoplasty, the patients self-determined their inclusion into the kyphoplasty or control group so that 40 patients were treated with kyphoplasty, whereas 20 served as controls. This study assessed changes in radiomorphology, pain visual analog scale (VAS) score, daily activities (European Vertebral Osteoporosis Study [EVOS] score), number of new vertebral fractures, and health care use. Outcomes were assessed before treatment and at 3 and 6 months of follow-up. All patients received standard medical treatment (1g calcium, 1000 IE vitamin D(3), standard dose of oral aminobisphosphonate, pain medication, physical therapy). Kyphoplasty increased midline vertebral height of the treated vertebral bodies by 12.1%, whereas in the control group, vertebral height decreased by 8.2% (p = 0.001). Augmentation and internal stabilization by kyphoplasty resulted in a reduction of back pain. VAS pain scores improved in the kyphoplasty group from 26.2 +/- 2 to 44.2 +/- 3.3 (SD; p = 0.007) and in the control group from 33.6 +/- 4.1 to 35.6 +/- 4.1 (not significant), whereas the EVOS score increased in the kyphoplasty group from 43.8 +/- 2.4 to 54.5 +/- 2.7 (p = 0.031) and in the control group from 39.8 +/- 4.5 to 43.8 +/- 4.6 (not significant). The number of back pain-related doctor visits within the 6-month follow-up period decreased significantly after kyphoplasty compared with controls: mean of 3.3 visits/patient in the kyphoplasty group and a mean of 8.6 visits/patient in the control group (p = 0.0147). The results of this study show significantly increased vertebral height, reduced pain, and improved mobility in patients after kyphoplasty. Kyphoplasty performed in appropriately selected osteoporotic patients with painful vertebral fractures is a promising addition to current medical treatment.
    Journal of Bone and Mineral Research 04/2005; 20(4):604-12. · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deformation of the bone matrix by mechanical strain causes fluid shifts within the osteocytic canaliculi which affect osteocytic cell metabolism. We applied low fluid shear (1 - 63 micro Pa for 10 - 48 h) to human osteoblastic cells (HOB) in vitro to study its impact on cell proliferation and differentiated functions. Proteins involved in translating the physical force into a cellular response were characterised. Low fluid shear stress stimulated proliferation of HOB 1.2-fold when stress was applied intermittently for 24 h. Shear stress also increased differentiated cellular properties such as alkaline phosphatase (ALP) activity (121 % of control), fibronectin (FN) and fibronectin receptor (FNR) expression (290 % and 200 %, respectively). Prostaglandin E (2) (PGE (2)) and TGFbeta1 release into the medium were significantly stimulated when shear stress was applied for 6 - 12 h and 24 - 48 h, respectively. TGFbeta1 + 2 neutralising antibodies or the presence of indomethacine inhibited the mitogenic effect of fluid shear and reduced ALP activity to its control level. Furthermore, TGFbeta treatment induced a dose-dependent increase in FN and FNR expression. Therefore, fluid shear stress of low magnitude (a) suffices to affect HOB metabolism and (b) regulates anchorage of HOB via FN and FNR by stimulating osteoblastic PGE (2) and TGFbeta secretion.
    Experimental and Clinical Endocrinology & Diabetes 08/2004; 112(7):356-63. · 1.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two isoforms of the androgen receptor (AR-A and AR-B), differing by a lack of the first 187 amino acids in the NH2-terminal transactivation domain of AR-A, are expressed in connective tissue and bone. Transient transfections of normal human osteoblastic cells (HOB) and of genital skin fibroblasts defective in AR (GSF-540) were utilized to compare the functional properties of AR isoforms in mesenchymal tissues. Overexpression of AR-B or AR-A did not significantly affect type I collagen secretion. However, overexpression of AR-B (but not AR-A) restored androgen-dependent DNA synthesis in AR-defective fibroblasts and increased DHT-mediated DNA synthesis three-fold in osteoblastic cells. Overexpression of AR-A did not affect DHT action but reduced DHT-dependent DNA synthesis when transfected together with AR-B. The need for an NH2-terminal sequence of the AR for complete receptor function was demonstrated using electrophoretic mobility shift assay. A peptide coding for the amino terminus of the complete AR was able to decrease the binding affinity of AR-B and increase the binding affinity of AR-A to the androgen response element. Our results suggest that AR-A lacks the ability to stimulate cell proliferation possibly due to reduced binding of AR co-activating proteins to the truncated N-terminal transactivation domain rather than due to impaired stability of the AR-A isoform.
    Steroids 01/2004; 68(14):1179-87. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adhesion of bone cells to the extracellular matrix is a crucial requirement for osteoblastic development and function. Adhesion receptors connect the extracellular matrix with the cyto-skeleton and convey matrix deformation into the cell. We tested the hypothesis that sex hormones modulate mechanoperception of human osteoblastic cells (HOB) by affecting expression of adhesion molecules like fibronectin and the fibronectin receptor. Only dihydrotestosterone (DHT), but not 17beta-estradiol, stimulated fibronectin (137%) and fibronectin receptor (252%) protein expression. The effects of deformation strain on HOB metabolism were investigated in a FlexerCell strain unit. Cyclically applied strain (2.5% elongation) increased DNA synthesis (125%) and interleukin-6 (IL-6) production (170%) without significantly affecting alkaline phosphatase (AP) activity, type I collagen (PICP), or osteoprotegerin (OPG) secretion. 10 nM DHT pretreatment abolished the mitogenic response of HOB to strain and increased AP activity (119%), PICP (163%), and OPG production (204%). In conclusion, mechanical strain stimulates bone remodeling by increasing HOB mitosis and IL-6 production. DHT enhances the osteoanabolic impact of deformation strain by increasing bone formation via increased AP activity and PICP production. At the same time, bone resorption is inhibited by decreased IL-6 and increased OPG secretion into the bone microenvironment.
    Journal of Experimental Medicine 12/2002; 196(10):1387-92. · 13.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adhesion of bone cells to the extracellular matrix is a crucial requirement for osteoblastic development and function. Adhesion receptors connect the extracellular matrix with the cyto-skeleton and convey matrix deformation into the cell. We tested the hypothesis that sex hormones modulate mechanoperception of human osteoblastic cells (HOB) by affecting expression of adhesion molecules like fibronectin and the fibronectin receptor. Only dihydrotestosterone (DHT), but not 17β-estradiol, stimulated fibronectin (137%) and fibronectin receptor (252%) protein expression. The effects of deformation strain on HOB metabolism were investigated in a FlexerCell® strain unit. Cyclically applied strain (2.5% elongation) increased DNA synthesis (125%) and interleukin-6 (IL-6) production (170%) without significantly affecting alkaline phosphatase (AP) activity, type I collagen (PICP), or osteoprotegerin (OPG) secretion. 10 nM DHT pretreatment abolished the mitogenic response of HOB to strain and increased AP activity (119%), PICP (163%), and OPG production (204%). In conclusion, mechanical strain stimulates bone remodeling by increasing HOB mitosis and IL-6 production. DHT enhances the osteoanabolic impact of deformation strain by increasing bone formation via increased AP activity and PICP production. At the same time, bone resorption is inhibited by decreased IL-6 and increased OPG secretion into the bone microenvironment.
    Journal of Experimental Medicine 11/2002; 196(10):1387-1392. · 13.21 Impact Factor