Wonpil Im

University of Kansas, Lawrence, Kansas, United States

Are you Wonpil Im?

Claim your profile

Publications (143)588.28 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys(40), residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein dynamics but also protein-lipid interactions in detail. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
    Biophysical Journal 04/2015; 108(8):1954-62. DOI:10.1016/j.bpj.2015.03.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycans play critical roles in many biological processes, and their structural diversity is key for specific protein-glycan recognition. Comparative structural studies of biological molecules provide useful insight into their biological relationships. However, most computational tools are designed for protein structure, and despite their importance, there is no currently available tool for comparing glycan structures in a sequence order- and size-independent manner. A novel method, GS-align, is developed for glycan structure alignment and similarity measurement. GS-align generates possible alignments between two glycan structures through iterative maximum clique search and fragment superposition. The optimal alignment is then determined by the maximum structural similarity score, GS-score, which is size-independent. Benchmark tests against the PDB N-linked glycan library and PDB homologous/non-homologous N-glycoprotein sets indicate that GS-align is a robust computational tool to align glycan structures and quantify their structural similarity. GS-align is also applied to template-based glycan structure prediction and monosaccharide substitution matrix generation to illustrate its utility. wonpil@ku.edu Availability: http://www.glycanstructure.org/gsalign. Supplementary data are available at Bioinformatics online. © The Author (2015). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Bioinformatics 04/2015; DOI:10.1093/bioinformatics/btv202
  • Hui Sun Lee, Yifei Qi, Wonpil Im
    [Show abstract] [Hide abstract]
    ABSTRACT: N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties. In this study, the impacts of N-glycans on protein structure and dynamics are systematically investigated using an integrated computational approach of the Protein Data Bank structure analysis and atomistic molecular dynamics simulations of glycosylated and deglycosylated proteins. Our study reveals that N-glycosylation does not induce significant changes in protein structure, but decreases protein dynamics, likely leading to an increase in protein stability. Overall, these results suggest not only a common role of glycosylation in proteins, but also a need for certain proteins to be properly glycosylated to gain their intrinsic dynamic properties.
    Scientific Reports 03/2015; 5:8926. DOI:10.1038/srep08926
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-ray crystallography, molecular dynamics (MD) simulations and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility, and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.
    Biochemistry 01/2015; DOI:10.1021/bi501255r
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular dynamics simulations are an effective tool to study the structure, dynamics, and thermodynamics of carbohydrates and proteins. However, the simulations of heterogeneous glycoprotein systems have been limited due to the lack of appropriate molecular force field parameters describing the linkage between the carbohydrate and the protein regions as well as the tools to prepare these systems for modeling studies. In this work we outline the recent developments in the CHARMM carbohydrate force field to treat glycoproteins and describe in detail the step-by-step procedures involved in building glycoprotein geometries using CHARMM-GUI Glycan Reader.
    Methods in molecular biology (Clifton, N.J.) 01/2015; 1273:407-29. DOI:10.1007/978-1-4939-2343-4_25
  • [Show abstract] [Hide abstract]
    ABSTRACT: While membrane simulations are widely employed to study the structure and dynamics of various lipid bilayers and membrane proteins in the bilayers, simulations of lipopolysaccharides (LPS) in membrane environments have been limited due to their structural complexity, difficulties in building LPS-membrane systems, and lack of the appropriate molecular force fields. In this work, as a first step to extend CHARMM-GUI Membrane Builder to incorporate LPS molecules and to explore their structures and dynamics in membrane environments using molecular dynamics simulations, we describe step-by-step procedures to build LPS bilayer systems using CHARMM and the recently developed CHARMM carbohydrate and lipid force fields. Such procedures are illustrated by building various bilayers of Escherichia coli R1.O6 LPS and the presentation of preliminary simulation results in terms of per-LPS area and density distributions of various components along the membrane normal.
    Methods in molecular biology (Clifton, N.J.) 01/2015; 1273:391-406. DOI:10.1007/978-1-4939-2343-4_24
  • [Show abstract] [Hide abstract]
    ABSTRACT: The polyvalent acidic lipid phosphatidylinositol, 4,5-bisphosphate (PIP2) is important for many cellular functions. It has been suggested that different pools of PIP2 exist in the cytoplasmic leaflet of the plasma membrane, and that such pooling could play a role in the regulation of PIP2. The mechanism of fencing, however, is not understood. This study presents the results of Langevin dynamics simulations of PIP2 to elucidate some of the molecular level considerations that must be applied to models for fencing. For each simulation, a pool of PIP2 (modeled as charged spheres) was placed in containments with boundaries modeled as a single row of rods (steric or electrostatic) or rigid protein filaments. It is shown that even a small gap (20 Å, which is 1.85 times larger than the diameter of a PIP2 sphere) leads to poor steric blocking, and that electrostatic blockage is only effective at very high charge density. Filaments of human septin, yeast septin, and actin also failed to provide adequate blockage when placed on the membrane surface. The two septins do provide high blockage consistent with experiment and with phenomenological considerations of permeability when they are buried 9 Å and 12 Å below the membrane surface, respectively. In contrast, burial does not improve blockage by the "arch-shaped" actin filaments. Free energy estimates using implicit membrane-solvent models indicate that burial of the septins to about 10 Å can be achieved without penetration of charged residues into the hydrophobic region of the membrane. These results imply that a functioning fence assembled from protein filaments must either be buried well below the membrane surface, have more than a single row, or contain additional components that fill small gaps in the filaments.
    BMC Biophysics 11/2014; 7:13. DOI:10.1186/s13628-014-0013-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: α-Helices play a critical role in mediating many protein-protein interactions (PPIs) as recognition motifs. Therefore, there is a considerable interest in developing small molecules that can mimic helical peptide segments to modulate α-helix-mediated PPIs. Due to the relatively low aqueous solubility and synthetic difficulty of most current α-helix mimetic small molecules, one important goal in this area is to develop small molecules with favorable physicochemical properties and ease of synthesis. Here we designed phenyl-piperazine-triazine-based α-helix mimetics that possess improved water solubility and excellent synthetic accessibility. We developed a facile solid-phase synthetic route that allows for rapid creation of a large, diverse combinatorial library of α-helix mimetics. Further we identified a selective inhibitor of the Mcl-1/BH3 interaction by screening a focused library of phenyl-piperazine-triazines, demonstrating that the scaffold is able to serve as functional mimetics of α-helical peptides. We believe that our phenyl-piperazine-triazine-based α-helix mimetics, along with the facile and divergent solid-phase synthetic method, have great potential as powerful tools for discovering potent inhibitors of given α-helix-mediated PPIs.
    ACS Combinatorial Science 10/2014; 16(12). DOI:10.1021/co500114f
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipid-linked oligosaccharides (LLOs) are the substrates of oligosaccharyltransferase (OST), the enzyme that catalyzes the en bloc transfer of the oligosaccharide onto the acceptor asparagine of nascent proteins during the process of N-glycosylation. To explore LLOs’ preferred location, orientation, structure, and dynamics in membrane bilayers of three different lipid types (dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and dioleoylphosphatidylcholine), we have modeled and simulated both eukaryotic (Glc3-Man9-GlcNAc2-PP-Dolichol) and bacterial (Glc1-GalNAc5-Bac1-PP-Undecaprenol) LLOs, which are composed of an isoprenoid moiety and an oligosaccharide, linked by pyrophosphate. The simulations show no strong impact of different bilayer hydrophobic thicknesses on the overall orientation, structure, and dynamics of the isoprenoid moiety and the oligosaccharide. The pyrophosphate group stays in the bilayer head group region. The isoprenoid moiety shows high flexibility inside the bilayer hydrophobic core, suggesting its potential role as a tentacle to search for OST. The oligosaccharide conformation and dynamics are similar to those in solution, but there are preferred interactions between the oligosaccharide and the bilayer interface, which leads to LLO sugar orientations parallel to the bilayer surface. Molecular docking of the bacterial LLO to a bacterial OST suggests that such orientations can enhance binding of LLOs to OST.
    Biophysical Journal 10/2014; 107(8):1885-1895. DOI:10.1016/j.bpj.2014.09.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. © 2014 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 08/2014; 35(27). DOI:10.1002/jcc.23702
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacological chaperones are small molecules that bind to proteins and stabilize them against thermal denaturation or proteolytic degradation, as well as assist or prevent certain protein-protein assemblies. These activities are being exploited for the development of treatments for diseases caused by protein instability and/or aberrant protein-protein interactions, such as those found in certain forms of cancers and neurodegenerative diseases. However, designing or discovering pharmacological chaperones for specific targets is challenging because of the relatively featureless protein target surfaces, the lack of suitable chemical libraries, and the shortage of efficient high-throughput screening methods. In this study, we attempted to address all these challenges by synthesizing a diverse library of small molecules that mimic protein α-helical secondary structures commonly found in protein-protein interaction surfaces. This was accompanied by establishing a facile "on-bead" high-throughput screening method that allows for rapid and efficient discovery of potential pharmacological chaperones and for identifying novel chaperones/inhibitors against a cancer-associated protein, myeloid cell leukemia 1 (MCL-1), and a Parkinson disease-associated protein, α-synuclein. Our data suggest that the compounds and methods described here will be useful tools for the development of pharmaceuticals for complex-disease targets that are traditionally deemed "undruggable."
    Proceedings of the National Academy of Sciences 07/2014; 111(30). DOI:10.1073/pnas.1320556111
  • Soohyung Park, Wonpil Im
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a theory of adaptive optimization for umbrella sampling. With the analytical bias force constant obtained from the constrained thermodynamic length along the reaction coordinate, the windows are distributed to optimize the overlap between neighbors. Combining with the replica exchange method, we propose a method of adaptive window exchange umbrella sampling. The efficiency gain in sampling by the present method originates from the optimal window distribution, in which windows are concentrated to the region where the free energy is steep, as well as consequently improved random walk.
    Journal of Chemical Theory and Computation 07/2014; DOI:10.1021/ct500504g
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although lipid force fields (FFs) used in molecular dynamics (MD) simulations have proved to be accurate, there has not been a systematic study on their accuracy over a range of temperatures. Motivated by the x-ray and neutron scattering measurements of common phosphatidylcholine (PC) bilayers (Kučerka et al. BBA. 1808: 2761, 2011), the CHARMM36 (C36) FF accuracy is tested in this work with MD simulations of six common PC lipid bilayers over a wide range of temperatures. The calculated scattering form factors and deuterium order parameters from the C36 MD simulations agree well with the x-ray and neutron experimental data. There is excellent agreement between MD simulations and experimental estimates for the surface area per lipid, bilayer thickness (DB), hydrophobic thickness (DC), and lipid volume (VL). The only minor discrepancy between simulation and experiment is a measure of (DB-DHH)/2 where DHH is the distance between the maxima in the electron density profile along the bilayer normal. Additional MD simulations with pure water and heptane over a range of temperatures provide explanations of possible reasons causing the minor deviation. Overall, the C36 FF is accurate for use with liquid crystalline PC bilayers of varying chain types and over biologically relevant temperatures.
    Biochimica et Biophysica Acta (BBA) - Biomembranes 06/2014; 1838(10). DOI:10.1016/j.bbamem.2014.06.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: The outer membrane of Gram-negative bacteria is a unique asymmetric lipid bilayer composed of phospholipids (PLs) in the inner leaflet and lipopolysaccharides (LPSs) in the outer leaflet. Its function as a selective barrier is crucial for the survival of bacteria in many distinct environments, and it also renders Gram-negative bacteria more resistant to antibiotics than their Gram-positive counterparts. Here, we report the structural properties of a model of the Escherichia coli outer membrane and its interaction with outer membrane phospholipase A (OmpLA) utilizing molecular dynamics simulations. Our results reveal that given the lipid composition used here, the hydrophobic thickness of the outer membrane is ∼3 Å thinner than the corresponding PL bilayer, mainly because of the thinner LPS leaflet. Further thinning in the vicinity of OmpLA is observed due to hydrophobic matching. The particular shape of the OmpLA barrel induces various interactions between LPS and PL leaflets, resulting in asymmetric thinning around the protein. The interaction between OmpLA extracellular loops and LPS (headgroups and core oligosaccharides) stabilizes the loop conformation with reduced dynamics, which leads to secondary structure variation and loop displacement compared to that in a DLPC bilayer. In addition, we demonstrate that the LPS/PL ratios in asymmetric bilayers can be reliably estimated by the per-lipid surface area of each lipid type, and there is no statistical difference in the overall membrane structure for the outer membranes with one more or less LPS in the outer leaflet, although individual lipid properties vary slightly.
    Biophysical Journal 06/2014; 106(11):2493-2502. DOI:10.1016/j.bpj.2014.04.024
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular dynamics (MD) simulation has become one of the key tools to obtain deeper insights into biological systems using various levels of descriptions such as all-atom, united-atom, and coarse-grained models. Recent advances in computing resources and MD programs have significantly accelerated the simulation time and thus increased the amount of trajectory data. Although many laboratories routinely perform MD simulations, analyzing MD trajectories is still time consuming and often a difficult task. ST-analyzer, http://im.bioinformatics.ku.edu/st-analyzer, is a standalone graphical user interface (GUI) toolset to perform various trajectory analyses. ST-analyzer has several outstanding features compared to other existing analysis tools: (i) handling various formats of trajectory files from MD programs, such as CHARMM, NAMD, GROMACS, and Amber, (ii) intuitive web-based GUI environment—minimizing administrative load and reducing burdens on the user from adapting new software environments, (iii) platform independent design—working with any existing operating system, (iv) easy integration into job queuing systems—providing options of batch processing either on the cluster or in an interactive mode, and (v) providing independence between foreground GUI and background modules—making it easier to add personal modules or to recycle/integrate pre-existing scripts utilizing other analysis tools. The current ST-analyzer contains nine main analysis modules that together contain 18 options, including density profile, lipid deuterium order parameters, surface area per lipid, and membrane hydrophobic thickness. This article introduces ST-analyzer with its design, implementation, and features, and also illustrates practical analysis of lipid bilayer simulations. © 2014 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 05/2014; 35(12). DOI:10.1002/jcc.23584
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositides (PIPs), phosphorylated derivatives of phosphatidylinositol (PI), are essential regulatory lipids involved in various cellular processes, including signal transduction, membrane trafficking, and cytoskeletal remodeling. To gain insights into protein-PIPs recognition process, it is necessary to study the inositol ring orientation (with respect to the membrane) of PIPs with different phosphorylation states. In this study, 8 PIPs (3 PIP, 2 PIP2 and 3 PIP3) with different phosphorylation and protonation sites have been separately simulated in two mixed bilayers (one with 20% phosphatidylserine (PS) lipids and another with PS lipids switched to phosphatidylcholine (PC) lipids), which roughly correspond to yeast membranes. Uniformity of the bilayer properties including hydrophobic thickness, acyl chain order parameters, and heavy atom density profiles is observed in both PS-contained and PC-enriched membranes due to the same hydrophobic core composition. The relationship between the inositol ring orientation (tilt and rotation angles) and its solvent-accessible surface area indicates that the orientation is mainly determined by its solvation energy. Different PIPs exhibit a clear preference in the inositol ring rotation angle. Surprisingly, a larger proportion of PIPs inositol ring stay closer to the surface of PS-contained membranes compared to PC-enriched ones. Such difference is rationalized with the formation of more hydrogen bonds between the PS/PI head groups and the PIPs inositol rings in PS-contained membranes. This hydrogen bond network could be functionally important, thus the present results can potentially add important and detailed features into the existing protein-PIPs recognition mechanism.
    The Journal of Physical Chemistry B 04/2014; 118(16). DOI:10.1021/jp500610t
  • [Show abstract] [Hide abstract]
    ABSTRACT: Caveolin induces membrane curvature and drives the formation of caveolae that participate in many crucial cell functions such as endocytosis. The central portion of caveolin-1 contains two helices (H1 and H2) connected by a three-residue break with both N- and C-termini exposed to the cytoplasm. Although a U-shaped configuration is assumed based on its inaccessibility by extracellular matrix probes, caveolin structure in a bilayer remains elusive. This work aims to characterize the structure and dynamics of caveolin-1 (D82-S136; Cav182-136) in a DMPC bilayer using NMR, fluorescence emission measurements, and molecular dynamics simulations. The secondary structure of Cav182-136 from NMR chemical shift indexing analysis serves as a guideline for generating initial structural models. Fifty independent molecular dynamics simulations (100 ns each) are performed to identify its favorable conformation and orientation in the bilayer. A representative configuration was chosen from these multiple simulations and simulated for 1 μs to further explore its stability and dynamics. The results of these simulations mirror those from the tryptophan fluorescence measurements (i.e., Cav182-136 insertion depth in the bilayer), corroborate that Cav182-136 inserts in the membrane with U-shaped conformations, and show that the angle between H1 and H2 ranges from 35 to 69°, and the tilt angle of Cav182-136 is 27 ± 6°. The simulations also reveal that specific faces of H1 and H2 prefer to interact with each other and with lipid molecules, and these interactions stabilize the U-shaped conformation.
    Biophysical Journal 03/2014; 106(6):1371-80. DOI:10.1016/j.bpj.2014.02.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coarse-grained (CG) and multiscale simulations are widely used to study large biological systems. However, preparing the simulation system is time-consuming when the system has multiple components, because each component must be arranged carefully as in protein/micelle or protein/bilayer systems. We have developed CHARMM-GUI PACE CG Builder for building solution, micelle, and bilayer systems using the PACE force field, a united-atom (UA) model for proteins, and the Martini CG force field for water, ions, and lipids. The robustness of PACE CG Builder is validated by simulations of various systems in solution (α3D, fibronectin, and lysozyme), micelles (Pf1, DAP12-NKG2C, OmpA, and DHPC-only micelle), and bilayers (GpA, OmpA, VDAC, MscL, OmpF, and lipid-only bilayers for six lipids). The micelle's radius of gyration, the bilayer thickness, and the per-lipid area in bilayers are comparable to the values from previous all-atom and CG simulations. Most tested proteins have root-mean squared deviations of less than 3 Å. We expect PACE CG Builder to be a useful tool for modeling/refining large, complex biological systems at the mixed UA/CG level.
    Journal of Chemical Information and Modeling 03/2014; 54(3). DOI:10.1021/ci500007n
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural information of a transmembrane (TM) helix dimer is useful in understanding molecular mechanisms of important biological phenomena such as signal transduction across the cell membrane. Here, we describe an umbrella sampling (US) scheme for predicting the structure of a TM helix dimer in implicit membrane using the interhelical crossing angle and the TM-TM relative rotation angles as the reaction coordinates. This scheme conducts an efficient conformational search on TM-TM contact interfaces, and its robustness is tested by predicting the structures of glycophorin A (GpA) and receptor tyrosine kinase EphA1 (EphA1) TM dimers. The nuclear magnetic resonance (NMR) structures of both proteins correspond to the global free-energy minimum states in their free-energy landscapes. In addition, using the landscape of GpA as a reference, we also examine the protocols of temperature replica-exchange molecular dynamics (REMD) simulations for structure prediction of TM helix dimers in implicit membrane. A wide temperature range in REMD simulations, for example, 250-1000 K, is required to efficiently obtain a free-energy landscape consistent with the US simulations. The interhelical crossing angle and the TM-TM relative rotation angles can be used as reaction coordinates in multidimensional US and be good measures for conformational sampling of REMD simulations. © 2013 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 02/2014; 35(4). DOI:10.1002/jcc.23494
  • [Show abstract] [Hide abstract]
    ABSTRACT: CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins. © 2014 Elsevier Inc. All rights reserved.
    Advances in Protein Chemistry and Structural Biology 01/2014; 96:235-65. DOI:10.1016/bs.apcsb.2014.06.002

Publication Stats

6k Citations
588.28 Total Impact Points


  • 2006–2015
    • University of Kansas
      • Department of Molecular Biosciences
      Lawrence, Kansas, United States
  • 2013
    • Stockholm University
      Tukholma, Stockholm, Sweden
  • 2003–2007
    • The Scripps Research Institute
      • Department of Cell and Molecular Biology
      La Jolla, CA, United States
  • 2000–2004
    • Weill Cornell Medical College
      • Department of Biochemistry
      New York, New York, United States
    • Université de Montréal
      Montréal, Quebec, Canada
  • 2002
    • Cornell University
      • Department of Biochemistry
      Итак, New York, United States