Eva Wegel

John Innes Centre, Norwich, England, United Kingdom

Are you Eva Wegel?

Claim your profile

Publications (12)60.91 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Plants produce an array of diverse secondary metabolites with important ecological functions, providing protection against pests, diseases, and abiotic stresses. Secondary metabolites are also a rich source of bioactive compounds for drug and agrochemical development. Despite the importance of these compounds, the metabolic diversity of plants remains largely unexploited, primarily due to the problems associated with mining large and complex genomes. It has recently emerged that genes for the synthesis of multiple major classes of plant-derived secondary metabolites (benzoxinones, diterpenes, triterpenes, and cyanogenic glycosides) are organized in clusters reminiscent of the metabolic gene clusters found in microbes. Many more secondary metabolic clusters are likely to emerge as the body of sequence information available for plants continues to grow, accelerated by high-throughput sequencing. Here, we describe approaches for the identification of secondary metabolic gene clusters in plants through forward and reverse genetics, map-based cloning, and genome mining and give examples of methods used for the analysis and functional confirmation of new clusters.
    Methods in enzymology 01/2012; 517:113-38. · 1.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.
    The Plant Journal 04/2011; 66(1):66-79. · 6.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcription-related chromatin decondensation has been studied in mammals for clusters of structurally and/or functionally related genes that are coordinately regulated (e.g., the homeobox locus in mice and the major histocompatability complex locus in humans). Plant genes have generally been considered to be randomly distributed throughout the genome, although several examples of metabolic gene clusters for synthesis of plant defense compounds have recently been discovered. Clustering provides for genetic linkage of genes that together confer a selective advantage and may also facilitate coordinate regulation of gene expression by enabling localized changes in chromatin structure. Here, we use cytological methods to investigate components of a metabolic gene cluster for synthesis of developmentally regulated defense compounds (avenacins) in diploid oat (Avena strigosa). Our experiments reveal that expression of the avenacin gene cluster is associated with cell type-specific chromatin decondensation, providing new insights into regulation of gene clusters in plants. Importantly, chromatin decondensation could be visualized not only at the large-scale level but down to the single gene level. We further show that the avenacin and sterol pathways are likely to be inversely regulated at the level of transcription.
    The Plant Cell 12/2009; 21(12):3926-36. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serine carboxypeptidase-like (SCPL) proteins have recently emerged as a new group of plant acyltransferases. These enzymes share homology with peptidases but lack protease activity and instead are able to acylate natural products. Several SCPL acyltransferases have been characterized to date from dicots, including an enzyme required for the synthesis of glucose polyesters that may contribute to insect resistance in wild tomato (Solanum pennellii) and enzymes required for the synthesis of sinapate esters associated with UV protection in Arabidopsis thaliana. In our earlier genetic analysis, we identified the Saponin-deficient 7 (Sad7) locus as being required for the synthesis of antimicrobial triterpene glycosides (avenacins) and for broad-spectrum disease resistance in diploid oat (Avena strigosa). Here, we report on the cloning of Sad7 and show that this gene encodes a functional SCPL acyltransferase, SCPL1, that is able to catalyze the synthesis of both N-methyl anthraniloyl- and benzoyl-derivatized forms of avenacin. Sad7 forms part of an operon-like gene cluster for avenacin synthesis. Oat SCPL1 (SAD7) is the founder member of a subfamily of monocot-specific SCPL proteins that includes predicted proteins from rice (Oryza sativa) and other grasses with potential roles in secondary metabolism and plant defense.
    The Plant Cell 09/2009; 21(8):2473-84. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene) expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes) and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.
    Plant Methods 02/2006; 2:18. · 2.67 Impact Factor
  • Source
    Eva Wegel, Peter Shaw
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin in the interphase nucleus is dynamic, decondensing where genes are activated and condensing where they are silenced. Local chromatin remodelling to a more open structure during gene activation is followed by changes in nucleosome distribution through the action of the transcriptional machinery. This leads to chromatin expansion and looping out of whole genomic regions. Such chromatin loops can extend beyond the chromosome territory. As several studies point to the location of transcription sites inside chromosome territories as well as at their periphery, extraterritorial loops cannot simply be a mechanism for making transcribed genes accessible to the transcriptional machinery and must occur for other reasons. The level of decondensation within an activated region varies greatly and probably depends on the density of activated genes and the number of engaged RNA polymerases. Genes that are silenced during development form a more closed chromatin structure. Specific histone modifications are correlated with gene activation and silencing, and silenced genes may become associated with heterochromatin protein 1 homologues or with polycomb group complexes. Several levels of chromatin packaging are found in the nucleus relating to the different functions of and performed by active genes; euchromatic and heterochromatic regions and the models explaining higher-order chromatin structure are still disputed.
    Chromosoma 12/2005; 114(5):331-7. · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed methods, based on confocal microscopy and three-dimensional (3D) modelling, for the analysis of complex tissues and individual nuclei. These methods were used to study the development of early wheat (Triticum aestivum) endosperm as a whole and of endosperm nuclei undergoing polyploidization. Fixed sections of immature caryopses were either stained with SYTOX Green or used for fluorescence in situ hybridization (FISH) to visualize centromeres, telomeres and a rye chromosome arm substitution. Each section was imaged as a confocal image stack. By using Amira 3.0 for computer image processing, rendered models were produced of the whole endosperm and of individual nuclei. We followed endosperm development up to the formation of a complete syncytium, which develops via a dorsal and a ventral plate of nuclei in the central cell. Modelling of nuclei showed that wheat chromosomes are not anchored to the nuclear membrane and become more randomly positioned in endoreduplicated nuclei. This analysis produced a precise description of the positioning of nuclei throughout the developing endosperm and of chromosomal domains in single nuclei.
    New Phytologist 11/2005; 168(1):253-62. · 6.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high molecular weight (HMW) glutenin-encoding genes in wheat are developmentally activated in the endosperm at about 8 days after anthesis. We have investigated the physical changes that occur in these genes in two transgenic lines containing about 20 and 50 copies each of the HMW glutenin genes together with their promoters. Using fluorescence in-situ hybridisation (FISH) and confocal imaging, we demonstrate that, in non-expressing tissue, each transgene locus consists of one or two highly condensed sites, which decondense into many foci upon activation of transcription in endosperm nuclei. Initiation of transcription can precede decondensation but not vice versa. We show that, in one of the lines, cytoplasmic transcript levels are high after onset of transcription but disappear by 14 days after anthesis, whereas small interfering RNAs, which indicate post-transcriptional gene silencing (PTGS), are detected at this stage. However, the transcript levels remain high at the transcription sites, most of the transgene copies are transcriptionally active and transcriptional activity in the nucleus ceases only with cell death at the end of endosperm development.
    Journal of Cell Science 04/2005; 118(Pt 5):1021-31. · 5.88 Impact Factor
  • Source
    E Wegel, P J Shaw
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analysed the chromosome organization in endosperm and embryo of bread wheat (Triticum aestivum L.), in order to compare these tissues with developing anthers, in which the centromeres associate, and the developing root xylem vessel cells, in which the chromosomes endoreduplicate to become polytene and associate via their centromeres. Both endosperm and embryo showed a typical Rabl configuration and a degree of non-homologous centromere association and the endosperm also showed extensive telomere association. Wheat endosperm is initially triploid and during its development a percentage of the nuclei increase their DNA content to 6C and 12C. 6C nuclei showed twice as many centromeres as 3C nuclei and the centromere number increased further in 12C nuclei. The higher the C-content of a nucleus the more the telomeres associated in endosperm. The vast majority of 12C nuclei showed six rye chromosome arms, although a few showed three associated groups of rye chromosome arms. This means that during endosperm development wheat nuclei show both polyploidization and polytenization.
    Cytogenetic and Genome Research 02/2005; 109(1-3):175-80. · 1.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been appreciated for many years that the structure of a transgene locus can have a major influence on the level and stability of transgene expression. Until recently, however, it has been common practice to discard plant lines with poor or unstable expression levels in favor of those with practical uses. In the last few years, an increasing number of experiments have been carried out with the primary aim of characterizing transgene loci and studying the fundamental links between locus structure and expression. Cereals have been at the forefront of this research because molecular, genetic and cytogenetic analysis can be carried out in parallel to examine transgene loci in detail. This review discusses what is known about the structure and organization of transgene loci in cereals, both at the molecular and cytogenetic levels. In the latter case, important links are beginning to be revealed between higher order locus organization, nuclear architecture, chromatin structure and transgene expression.
    Plant Molecular Biology 06/2003; 52(2):247-58. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence in situ hybridization (FISH) coupled with confocal microscopy has been used to reveal the interphase chromosome organization in plants. In wheat and several other related species, we have shown that the interphase chromosomes are in a very well-defined organization, with centromeres and telomeres located at opposite sides of the nuclear envelope-a classic Rabl configuration. In transgenic wheat lines, FISH analysis of metaphase chromosomes has shown that multiple transgene copies can be integrated along a single chromosome, with large regions of intervening genomic sequence. These multiple copies are often colocalized in interphase, suggesting either an ectopic association or a highly reproducible interphase chromatin configuration. Bromo-uridine (BrU) incorporation has been used to label transcription sites in the nucleolus. Using pea root tissue, we have combined BrU incorporation with preembedding 1-nm gold detection to image the nucleolar transcription sites by electron microscopy. This has revealed many distinct elongated clusters of silver-gold particles. These clusters are 200-300 nm in length and are thicker at one end than the other. We suggest that each cluster corresponds to a single transcribed gene. Serial sectioning of several entire nucleoli has enabled the reconstruction of all the nucleolar transcription sites, and we have estimated that there are 200-300 transcribed genes per nucleolus.
    Journal of Structural Biology 01/2002; 140(1-3):31-8. · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the organization of transgenes delivered by particle bombardment into the wheat genome, combining conventional molecular analysis with fluorescence in situ hybridization (FISH) and three-dimensional confocal microscopy. We selected a representative population of transformed wheat lines and carried out molecular and expression analysis. FISH on metaphase chromosomes showed that transgene integration sites were often separated by considerable lengths of genomic DNA (>1 Mbp), or could even be on opposite chromosome arms. Plants showing multiple integration sites on a single chromosome were selected for three-dimensional confocal analysis of interphase nuclei in root and embryo tissue sections. Confocal microscopy revealed that these sites lay in close physical proximity in the interphase nuclei. Our results clearly show that multiple transgenes physically separated by large intervening regions of endogenous DNA at metaphase can be brought together at interphase. This may reflect the original physical organization of the endogenous DNA at the moment of transformation, with DNA strand breaks introduced into several co-localized DNA loops by the intruding gold particles. Alternatively, the transgenes may be brought together after transformation, either by an ectopic homologous pairing mechanism, or by recruitment to a common transcription site.
    The Plant Journal 01/2001; 24(6):713-23. · 6.58 Impact Factor