Pierfrancesco Tassone

Temple University, Filadelfia, Pennsylvania, United States

Are you Pierfrancesco Tassone?

Claim your profile

Publications (181)971.49 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent findings have elucidated that the regulation of messenger RNA (mRNA) levels is due to the synergistic and antagonist actions of transcription factors (TFs) and microRNAs (miRNAs). Mutual interactions among these molecules are easily modeled and analyzed using graphs whose nodes are molecules, and directed edges represent the associations among them. In particular, small subgraphs having three nodes also referred to as feed-forward loops (FFLs) or regulatory loops play a crucial role in many different diseases, such as cancer. Available technological platforms enable the investigation of only a single aspect of these mechanisms, e.g., the quantification of levels of mRNA or miRNA. Consequently, there exist different data sources for investigating some aspects of this problem, e.g., miRNA-mRNA or TF-mRNA associations. The comprehensive analysis is made possible only by the integration and the analysis of these data sources. Currently, the interest of researchers in this area is growing, the number of projects is increasing, and the number of challenges and issues for computer scientists is considerable. The need for an introductive survey from a computer science point of view consequently arises. This survey starts by discussing general concepts related to production of data. Then, main existing approaches of analysis are presented and discussed. Future improvements and challenges are also discussed.
    EURASIP Journal on Bioinformatics and Systems Biology 12/2015; 2015(1-1):4. DOI:10.1186/s13637-015-0023-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Erlotinib is a targeted agent commonly used in advanced non-small cell lung cancer (aNSCLC). However, drug-related skin toxicity often may affect the quality of life of cancer patients and lead to treatment discontinuation. Genetic polymorphisms in drug transporters and metabolizing enzymes play a major role in the interindividual variability in terms of efficacy and toxicity of erlotinib treatment. The aim of our study was to identify genetic determinants in adsorption, distribution, metabolism, and excretion genes influencing skin rash (SR) by the novel drug-metabolizing enzyme and transporter (DMET) microarray Affymetrix platform in aNSCLC patients. Methods: In a retrospective study, 34 erlotinib-treated aNSCLC patients were genotyped by DMET Plus chip: 23 patients experienced SR (cases), while 11 patients did not (controls). Peripheral blood DNA was genotyped. Genotype association was analyzed by Fisher's exact test, and the toxicity-associated gene sets underwent Ingenuity Pathway Analysis (IPA)(®). Results: Seven SNPs in six genes (CYP27B1, MAT1A1, CHST1, CYP4B1, ADH6, and SLC22A1) were associated with the occurrence of SR or with a protective effect. Specifically, the rs8176345 in CYP27B1 gene was significantly correlated with SR (p = 0.0003, OR 55.55, 95 % CI 2.7036-1141.1707). The IPA on SR-related genes highlighted the role of a variety of canonical pathways including 1,25-dihydroxyvitamin D3 biosynthesis, S-adenosyl-L-methionine biosynthesis, and methionine degradation I (to homocysteine) in SR development. Conclusion: Although exploratory, this study indicates rs8176345 in CYP27B1 gene as significantly correlated with erlotinib-induced SR in aNSCLC patients probably through a mechanism mediated by vitamin D3 and inflammation at skin level.
    Cancer Chemotherapy and Pharmacology 11/2015; DOI:10.1007/s00280-015-2916-3 · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The identification of overexpressed miRNAs in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. miRNA and gene expression profiles of two large representative MM datasets, available from retrospective and prospective series and encompassing a total of 249 patients at diagnosis, were analyzed by means of in silico integrative genomics methods, based on MAGIA2 and Micrographite computational procedures. We first identified relevant miRNA/transcription factors/target gene regulation circuits in the disease and linked them to biological processes. Members of the miR-99b/let-7e/miR-125a cluster, or of its paralog, upregulated in t(4;14), were connected with the specific transcription factors PBX1 and CEBPA and several target genes. These results were validated in two additional independent plasma cell tumor datasets. Then, we reconstructed a non-redundant miRNA-gene regulatory network in MM, linking miRNAs, such as let-7g, miR-19a, mirR-20a, mir-21, miR-29 family, miR-34 family, miR-125b, miR-155, miR-221 to pathways associated with MM subtypes, in particular the ErbB, the Hippo, and the Acute myeloid leukemia associated pathways.
    Oncotarget 10/2015; DOI:10.18632/oncotarget.6151 · 6.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The onset of drug-resistance is a major cause of treatment failure in multiple myeloma (MM). While increasing evidence is defining the role of microRNAs in mediating drug-resistance, their potential activity as drug-sensitizing agents has not yet been investigated in MM. Experimental design: Here we studied the potential utility of miR-221/222 inhibition in sensitizing refractory MM cells to melphalan. Results: MiR-221/222 expression inversely correlated with melphalan-sensitivity of MM cells. Inhibition of miR-221/222 overcame melphalan-resistance and triggered apoptosis of MM cells in vitro, in the presence or absence of human bone marrow stromal cells. Decreased MM cell growth induced by inhibition of miR-221/222 plus melphalan was associated with a marked upregulation of pro-apoptotic BBC3/PUMA protein, a miR-221/222 target, as well as with modulation of drug influx-efflux transporters SLC7A5/LAT1 and the ATP-binding cassette (ABC) transporter ABCC1/MRP1. Finally, in vivo treatment of SCID/NOD mice bearing human melphalan-refractory MM xenografts with systemic LNA-i-miR-221 plus melphalan overcame drug-resistance, evidenced by growth inhibition with significant antitumor effects together with modulation of PUMA and ABCC1 in tumors retrieved from treated mice. Conclusions: Taken together, our findings provide the proof of concept that LNA-i-miR-221 can reverse melphalan-resistance in preclinical models of MM, providing the framework for clinical trials to overcome drug resistance and improve patient outcome in MM.
    Cancer Research 08/2015; 75(15 Supplement):4426-4426. DOI:10.1158/1538-7445.AM2015-4426 · 9.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DIS3 is a catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) domains, recently found mutated in multiple myeloma (MM), a clinically and genetically heterogeneous form of plasma cell (PC) dyscrasia. We analyzed by next-generation sequencing (NGS) the DIS3 PIN and RNB domains in purified bone marrow PCs from 164 representative patients, including 130 cases with MM, 24 with primary PC leukemia and 10 with secondary PC leukemia. DIS3 mutations were found respectively in 18.5%, 25% and 30% of cases. Identified variants were predominantly missense mutations localized in the RNB domain, and were often detected at low allele frequency. DIS3 mutations were preferentially carried by IGH-translocated/nonhyperdiploid patients. Sequential analysis at diagnosis and relapse in a subset of cases highlighted some instances of increasing DIS3 mutation burden during disease progression. NGS also revealed that the majority of DIS3 variants in mutated cases were comparably detectable at transcriptional level. Furthermore, gene expression profiling analysis in DIS3-mutated patients identified a transcriptional signature suggestive for impaired RNA exosome function. In conclusion, these data further support the pathological relevance of DIS3 mutations in plasma cell dyscrasias and suggest that DIS3 may represent a potential tumor suppressor gene in such disorders.
    Oncotarget 07/2015; 6(28). DOI:10.18632/oncotarget.4674 · 6.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: miR-21 is an oncogenic microRNA (miRNA) with an emerging role as therapeutic target in human malignancies, including multiple myeloma (MM). Here we investigated whether miR-21 is involved in MM-related bone disease (BD). We found that miR-21 expression is dramatically enhanced, while osteoprotegerin (OPG) is strongly reduced, in bone marrow stromal cells (BMSCs) adherent to MM cells. On this basis, we validated the 3'UTR of OPG mRNA as miR-21 target. Constitutive miR-21 inhibition in lentiviral-transduced BMSCs adherent to MM cells restored OPG expression and secretion. Interestingly, miR-21 inhibition reduced RANKL production by BMSCs. Overexpression of protein inhibitor of activated STAT3 (PIAS3), which is a direct and validated target of miR-21, antagonized STAT3-mediated RANKL gene activation. Finally, we demonstrate that constitutive expression of miR-21 inhibitors in BMSCs restores RANKL/OPG balance and dramatically impairs the resorbing activity of mature osteoclasts. Taken together, our data provide proof-of-concept that miR-21 overexpression within MM-microenviroment plays a crucial role in bone resorption/apposition balance, supporting the design of innovative miR-21 inhibition-based strategies for MM-related BD.
    Oncotarget 06/2015; 6(29). DOI:10.18632/oncotarget.4398 · 6.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is still uncertain if targeted therapy-based regimens in advanced gastric cancer actually produce survival benefit. To shed light on this important question, we performed a systematic review and meta-analyses on each relevant targeted-pathway. By searching literature databases and proceedings of major cancer meetings in the time-frame 2005-2014, 22 randomized clinical trials exploring targeted therapy for a total of 7022 advanced gastric cancer patients were selected and included in the final analysis. Benefit was demonstrated for antiangiogenic agents in terms of overall survival (HR 0.759; 95%CI 0.655-0.880; p<0.001). Conversely no benefit was found for EGFR pathway (HR 1.077; 95%CI 0.847-1.370; p= 0.543). Meta-analysis of HER-2 pathway confirmed improvement in terms of survival outcome, already known for this class of drugs (HR 0.823; 95%CI 0.722-0.939; p= 0.004). Pooled analysis demonstrated a significant survival benefit (OS: HR 0.823; PFS: HR 0.762) with acceptable tolerability profile for targeted-based therapies as compared to conventional treatments. This finding conflicts with the outcome of most individual studies, probably due to poor trial design or patients selection. In conclusion, our findings demonstrate a significant survival benefit for targeted therapy in its whole, which can be ascribed to anti-angiogenic and anti-HER2 agents.
    Cancer biology & therapy 06/2015; 16(8). DOI:10.1080/15384047.2015.1056415 · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thymidylate synthase (TS) poly-epitope peptide (TSPP) is a 27-mer peptide vaccine containing the amino acidic sequences of three epitopes with HLA-A2.1-binding motifs of TS, an enzyme overexpressed in cancer cells, which plays a crucial role in DNA repair and replication. Based on the results of preclinical studies, we designed a phase Ib trial (TSPP/VAC1) to investigate, in a dose escalation setting, the safety and the biological activity of TSPP vaccination alone (arm A) or in combination with GM-CSF and IL-2 (arm B) in cancer patients. Twenty-one pretreated metastatic cancer patients, with a good performance status (ECOG ≤ 1) and no severe organ failure or immunological disease, were enrolled in the study (12 in arm A, nine in arm B) between April 2011 and January 2012, with a median follow-up of 28 months. TSPP resulted safe, and its maximal tolerated dose was not achieved. No grade 4 toxicity was observed. The most common adverse events were grade 2 dermatological reactions to the vaccine injection, cough, rhinitis, fever, poly-arthralgia, gastro-enteric symptoms and, to a lesser extent, moderate hypertension and hypothyroidism. We detected a significant rise in auto-antibodies and TS-epitope-specific CTL precursors. Furthermore, TSPP showed antitumor activity in this group of pretreated patients; indeed, we recorded one partial response and seven disease stabilizations (SD) in arm A, and three SD in arm B. Taken together, our findings provide the framework for the evaluation of the TSPP anti-tumor activity in further disease-oriented clinical trials.
    Cancer Immunology and Immunotherapy 06/2015; 64(9). DOI:10.1007/s00262-015-1711-7 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple Myeloma (MM) is a malignancy characterized by the hyperdiploid (HD-MM) and the non-hyperdiploid (nHD-MM) subtypes. To shed light within the molecular architecture of these subtypes, we used a novel integromics approach. By annotated MM patient mRNA/microRNA (miRNA) datasets, we investigated mRNAs and miRNAs profiles with relation to changes in transcriptional regulators expression. We found that HD-MM displays specific gene and miRNA expression profiles, involving the Signal Transducer and Activator of Transcription (STAT)3 pathway as well as the Transforming Growth Factor-beta (TGFβ) and the transcription regulator Nuclear Protein-1 (NUPR1). Our data define specific molecular features of HD-MM that may translate in the identification of novel relevant druggable targets.
    Oncotarget 05/2015; 5(22). DOI:10.18632/oncotarget.4302 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cell malignancies frequently colonize the bone marrow. The mechanisms responsible for this preferential homing are incompletely understood. Here we studied multiple myeloma (MM) as a model of a terminally differentiated B cell malignancy that selectively colonizes the bone marrow. We found that extracellular CyPA (eCyPA), secreted by bone marrow endothelial cells (BMECs), promoted the colonization and proliferation of MM cells in an in vivo scaffold system via binding to its receptor, CD147, on MM cells. The expression and secretion of eCyPA by BMECs was enhanced by BCL9, a Wnt-β-catenin transcriptional coactivator that is selectively expressed by these cells. eCyPA levels were higher in bone marrow serum than in peripheral blood in individuals with MM, and eCyPA-CD147 blockade suppressed MM colonization and tumor growth in the in vivo scaffold system. eCyPA also promoted the migration of chronic lymphocytic leukemia and lymphoplasmacytic lymphoma cells, two other B cell malignancies that colonize the bone marrow and express CD147. These findings suggest that eCyPA-CD147 signaling promotes the bone marrow homing of B cell malignancies and offer a compelling rationale for exploring this axis as a therapeutic target for these malignancies.
    Nature medicine 05/2015; 21(6). DOI:10.1038/nm.3867 · 27.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 4 (IRF4) is an attractive therapeutic target in multiple myeloma (MM). We here report that expression of IRF4 mRNA inversely correlates with microRNA (miR)-125b in MM patients. Moreover, we provide evidence that miR-125b is downregulated in TC2/3 molecular MM subgroups and in established cell lines. Importantly, constitutive expression of miR-125b-5p by lentiviral vectors or transfection with synthetic mimics impaired growth and survival of MM cells and overcame the protective role of bone marrow stromal cells (BMSCs) in vitro. Apoptotic and autophagy-associated cell death were triggered in MM cells upon miR-125b-5p ectopic expression. Importantly, we found that the anti-MM activity of miR-125b-5p was mediated via direct downregulation of IRF4 and its downstream effector BLIMP-1. Moreover, inhibition of IRF4 translated into downregulation of c-Myc, caspase-10 and cFlip, relevant IRF4-downstream effectors. Finally, in vivo intra-tumor or systemic delivery of formulated miR-125b-5p mimics against human MM xenografts in SCID/NOD mice induced significant anti-tumor activity and prolonged survival. Taken together, our findings provide evidence that miR-125b, differently from other hematologic malignancies, has tumor suppressor activity in MM. Furthermore, our data provide proof-of-concept that synthetic miR-125b-5p mimics are promising anti-MM agents to be validated in early clinical trials.Leukemia accepted article preview online, 19 May 2015. doi:10.1038/leu.2015.124.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 05/2015; 29(11). DOI:10.1038/leu.2015.124 · 10.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are short non coding RNAs that regulate the gene expression and play a relevant role in physiopathological mechanisms such as development, proliferation, death, and differentiation of normal and cancer cells. Recently, abnormal expression of miRNAs has been reported in most of solid or hematopoietic malignancies, including multiple myeloma (MM), where miRNAs have been found deeply dysregulated and act as oncogenes or tumor suppressors. Presently, the most recognized approach for definition of miRNA portraits is based on microarray profiling analysis. We here describe a workflow based on the identification of dysregulated miRNAs in plasma cells from MM patients based on Affymetrix technology. We describe how it is possible to search miRNA putative targets performing whole gene expression profile on MM cell lines transfected with miRNA mimics or inhibitors followed by luciferase reporter assay to analyze the specific targeting of the 3'untranslated region (UTR) sequence of a mRNA by selected miRNAs. These technological approaches are suitable strategies for the identification of relevant druggable targets in MM.
    Methods in molecular biology (Clifton, N.J.) 05/2015; DOI:10.1007/7651_2015_250 · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A wealth of studies has highlighted the biological complexity of hematologic malignancies and the role of dysregulated signal transduction pathways. Along with the crucial role of genetic abnormalities, epigenetic aberrations are nowadays emerging as relevant players in cancer development, and significant research efforts are currently focusing on mechanisms by which histone post-translational modifications, DNA methylation and noncoding RNAs contribute to the pathobiology of cancer. As a consequence, these studies have provided the rationale for the development of epigenetic drugs, such as histone deacetylase inhibitors and demethylating compounds, some of which are currently in advanced phase of pre-clinical investigation or in clinical trials. In addition, a more recent body of evidence indicates that microRNAs (miRNAs) might target effectors of the epigenetic machinery, which are aberrantly expressed or active in cancers, thus reverting those epigenetic abnormalities driving tumor initiation and progression. This review will focus on the broad epigenetic activity triggered by members of the miR-29 family, which underlines the potential of miR-29s as candidate epi-therapeutics for the treatment of hematologic malignancies.
    Oncotarget 04/2015; 6(15). DOI:10.18632/oncotarget.3805 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient’s sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes.
    Oncotarget 04/2015; 6(15). DOI:10.18632/oncotarget.3830 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study we investigated specific biological and clinical features associated with chronic lymphocytic leukemia (CLL) patients carrying stereotyped BCR subset #4 (IGHV4-34) among a prospective cohort of 462 CLL/MBL patients in early stage (Binet A). All subset #4 patients (n=16) were characterized by the IGHV mutated gene configuration, and absence of unfavorable cytogenetic lesions, NOTCH1 or SF3B1 mutations. Gene and miRNA expression profiling evidenced that the leukemic cells of subset #4 cases showed significant downregulation of WDFY4, MF2A and upregulation of PDGFA, FGFR1 and TFEC gene transcripts, as well as the upregulation of miR-497 and miR-29c. The transfection of miR-497 mimic in primary leukemic CLL cells induced a downregulation of BCL2, a known validated target of this miRNA. Our data identify biological characteristics associated with subset #4 patients, providing further evidence for the putative role of BCR in shaping the features of the tumor cells in CLL.
    Leukemia & lymphoma 04/2015; 56(11):1-51. DOI:10.3109/10428194.2015.1028051 · 2.89 Impact Factor
  • Marco Rossi · Teresa Calimeri · Pierosandro Tagliaferri · Pierfrancesco Tassone ·

    03/2015; 4(1):33-47. DOI:10.2217/ijh.14.45
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunosuppressive cells have been reported to play an important role in tumor-progression mainly because of their capability to promote immune-escape, angiogenesis, and metastasis. Among them, myeloid-derived suppressor cells (MDSCs) have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR, and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM) of multiple myeloma (MM) patients with a role in disease progression and/or drug resistance. Pre-clinical models recapitulating the complexity of the MM-related BM microenvironment (BMM) are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs) and for the development of new agents targeting MM-associated immune-suppressive cells. This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM-BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM.
    Frontiers in Oncology 12/2014; 4:348. DOI:10.3389/fonc.2014.00348
  • [Show abstract] [Hide abstract]
    ABSTRACT: The analysis of deregulated microRNAs (miRNAs) is emerging as a novel approach to disclose the regulation of tumor suppressor or tumor promoting pathways in tumor cells. Targeting aberrantly expressed miRNAs is therefore a promising strategy for cancer treatment. By miRNA profiling of primary plasma cells from multiple myeloma (MM) patients, we previously reported increased miR-125a-5p levels associated to specific molecular subgroups. On these premises, we aimed at investigating the biological effects triggered by miR-125a-5p modulation in MM cells. Expression of p53 pathway-related genes was down-regulated in MM cells transfected with miR-125a-5p mimics. Luciferase reporter assays confirmed specific p53 targeting at 3'UTR level by miR-125a-5p mimics. Interestingly, bone marrow stromal cells (BMSCs) affected the miR-125a-5p/p53 axis, since adhesion of MM cells to BMSCs strongly up-regulated miR-125a-5p levels, while reduced p53 expression. Moreover, ectopic miR-125a-5p reduced, while miR-125–5p inhibitors promoted, the expression of tumor suppressor miR-192 and miR-194, transcriptionally regulated by p53. Lentiviral-mediated stable inhibition of miR-125a-5p expression in wild-type p53 MM cells dampened cell growth, increased apoptosis and reduced cell migration. Importantly, inhibition of in vitro MM cell proliferation and migration was also achieved by synthetic miR-125a-5p inhibitors and was potentiated by the co-expression of miR-192 or miR-194. Taken together, our data indicate that miR-125a-5p antagonism results in the activation of p53 pathway in MM cells, underlying the crucial role of this miRNA in the biopathology of MM and providing the molecular rationale for the combinatory use of miR-125a inhibitors and miR-192 or miR-194 mimics for MM treatment. J. Cell. Physiol. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 12/2014; 229(12). DOI:10.1002/jcp.24669 · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent developments of microarray technology enable the investigation of allelic variants that may be correlated to phenotypes. In particular the Affymetrix DMET (Drug Metabolism Enzymes and Transporters) platform enables the simultaneous investigation of all the genes that are related to drug absorption, distribution, metabolism and excretion (ADME) and it has been used in clinical studies. In a previous work we developed DMET-Analyzer, a platform able to automatize the study of allelic variants, that has been validated in clinical studies. DMET-Analyzer is able to correlate a single variant for each probe (related to a portion of a gene) through the use of the Fisher test, on the other hand it is unable to discover multiple associations among allelic variants. To overcome those limitations, here we propose DMET-Miner, that is able to correlate the presence of a set of allelic variants by employing an Apriori-like discovery strategy. Preliminary experiments on a synthetic DMET dataset.
    Bioinformatics and Biomedicine (BIBM), 2014 IEEE International Conference on; 11/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microRNA(miRNA)-34a is a key regulator of tumor suppression. It controls the expression of a plethora of target proteins involved in cell cycle, differentiation and apoptosis, and antagonizes processes that are necessary for basic cancer cell viability as well as cancer stemness, metastasis, and chemoresistance. In this review, we focus on the molecular mechanisms of miR-34a-mediated tumor suppression, giving emphasis on the main miR-34a targets, as well as on the principal regulators involved in the modulation of this miRNA. Moreover, we shed light on the miR-34a role in modulating responsiveness to chemotherapy and on the phytonutrients-mediated regulation of miR-34a expression and activity in cancer cells. Given the broad anti-oncogenic activity of miR-34a, we also discuss the substantial benefits of a new therapeutic concept based on nanotechnology delivery of miRNA mimics. In fact, the replacement of oncosuppressor miRNAs provides an effective strategy against tumor heterogeneity and the selective RNA-based delivery systems seems to be an excellent platform for a safe and effective targeting of the tumor.
    Molecular Therapy 09/2014; 3(9). DOI:10.1038/mtna.2014.47 · 6.23 Impact Factor

Publication Stats

5k Citations
971.49 Total Impact Points


  • 2012-2015
    • Temple University
      • College of Science and Technology
      Filadelfia, Pennsylvania, United States
  • 1994-2015
    • Universita' degli Studi "Magna Græcia" di Catanzaro
      • Department of Health Sciences
      Catanzaro, Calabria, Italy
  • 2009
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2006-2009
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
  • 2005-2008
    • Dana-Farber Cancer Institute
      • Department of Medical Oncology
      Boston, Massachusetts, United States
  • 2004
    • University of California, San Diego
      • Department of Medicine
      San Diego, California, United States
  • 1998
    • University of Naples Federico II
      • Department of Molecular Medicine and Medical Biotechnology
      Napoli, Campania, Italy
  • 1994-1995
    • Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori
      Meldola, Emilia-Romagna, Italy