Robert Martin

Loma Linda University, Loma Linda, CA, United States

Are you Robert Martin?

Claim your profile

Publications (12)10.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Surgical brain injury (SBI) is damage to functional brain tissue resulting from neurosurgical manipulations such as sharp dissection, electrocautery, retraction, and direct applied pressure. Brain edema is the major contributor to morbidity with inflammation, necrosis, oxidative stress, and apoptosis likely playing smaller roles. Effective therapies for SBI may improve neurological outcomes and postoperative morbidities associated with brain surgery. Previous studies show an adrenergic correlation to blood-brain barrier control. The α-2 receptor agonist dexmedetomidine (DEX) has been shown to improve neurological outcomes in stroke models. We hypothesized that DEX may reduce brain edema and improve neurological outcomes in a rat model of SBI. Male Sprague-Dawley rats (n = 63) weighing 280 to 350 g were randomly assigned to 1 of 4 IP treatment groups: sham IP, vehicle IP, DEX 10 mg/kg, and DEX 30 mg/kg. Treatments were given 30 min before SBI. These treatment groups were repeated to observe the physiologic impact of DEX on mean arterial blood pressure (MAP), heart rate (HR), and blood glucose on SBI naïve animals. Rats were also assigned to 4 postinjury IV treatment groups: sham IV, vehicle IV, DEX 10/5, and DEX 30/15 (DEX group doses were 10 and 30 mg/kg/hr, with 5 and 15 mg/kg initial loading doses, respectively). Initial loading doses began 20 min after SBI, followed by 2 h of infusion. SBI animals were subjected to neurological testing 24 h after brain injury by a blinded observer, promptly killed, and brain water content measured via the dry/wet weight method. All treatment groups showed a significant difference in ipsilateral frontal brain water content and neurological scores when compared with sham animals. However, there was no difference between DEX-treated and vehicle animals. Physiologic monitoring showed treatment with low or high doses of DEX significantly decreased MAP and HR, and briefly increased blood glucose compared with naïve or vehicle-treated animals. DEX administration did not reduce brain edema or improve neurological function after SBI in this study. The statistical difference in brain water content and neurological scores when comparing sham treatment to vehicle and DEX treatments shows consistent reproduction of this model. Significant changes in MAP, HR, and blood glucose after DEX as compared to vehicle and sham treatments suggest appropriate delivery of drug.
    Anesthesia and analgesia 05/2012; 115(1):154-9. · 3.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracerebral hemorrhage (ICH) is a devastating stroke subtype affecting 120,000 Americans annually. Of those affected, 40%to 50% will die within the first 30 days, whereas the survivors are left with a lifetime of neurobehavioral disabilities. Recently, it has been shown that volatile anesthetics such as isoflurane can reduce brain injury after an ischemic stroke. As a result, in this study, we investigated the effects of isoflurane as a posttreatment therapeutic modality in ICH-injured mice. Specifically, we investigated whether isoflurane posttreatment can preserve the structural integrity of the brain by reducing apoptotic damage and, in turn, improve functional outcome by amelioration of brain edema and neurobehavioral deficits. Male CD1 mice (n = 53) were divided into the following groups: sham (n = 14), ICH (n = 14), ICH treated with 1.5% isoflurane posttreatment for 1 hour (n = 15), and ICH treated with 1.5% isoflurane posttreatment for 2 hours (n = 10). The blood injection ICH model was adapted; this involved extracting autologous blood from the mouse tail and injecting it directly into the right basal ganglia. One hour after surgery, treated mice were placed in a glass chamber maintained at 37°C and infused with 1.5% isoflurane for 1 or 2 hours. At 24 hours postinjury, mice were assessed for neurobehavioral deficits using the Modified Garcia Score and then killed and assessed for brain water content. Double immunofluorescent staining was performed using neuronal marker MAP-2 and TUNEL under a fluorescent microscope to assess for apoptosis. Our results indicated that after 1-hour 1.5% isoflurane posttreatment, there was a significant reduction in brain edema, a decrease in apoptotic cell death, and a significant improvement in neurobehavioral deficits. Our results suggest that isoflurane may be an effective posttreatment therapeutic option for ICH because of its ability to reduce structural damage and subsequently preserve functional integrity.
    Anesthesia and analgesia 05/2011; 113(2):343-8. · 3.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral hypoxia-ischemia (HI) is an important cause of mortality and disability in newborns. It is a result of insufficient oxygen and glucose circulation to the brain, initiating long-term cerebral damage and cell death. Emerging evidence suggests that endothelin receptor-A (ETA) activation can play an important role in mediating brain damage. In this study, we investigated the role of ETA receptor inhibition using ABT-627 in neonatal HI injured rats. Postnatal day 10 Sprague-Dawley rat pups (n=91) were assigned to the following groups: sham (n=28), HI (vehicle, n=32), and HI with ABT-627 at 3 mg/kg (n=31). The Rice-Vannucci model was used to induce ischemia by ligating the right common carotid artery, followed by a 2 h hypoxic episode using 8% oxygen in a 37°C chamber. Postoperative assessment was conducted at 48 h after injury and again at 4 weeks. At the acute time point, investigative markers included cerebral edema, infarction volume, and body weight change. Neurobehavioral testing was measured at 4 weeks post-injury. Our findings indicated that ABT-627 had no effect on the measured parameters. This study suggests that ETA receptor blockade using ABT-627 post-treatment fails to improve neurological outcomes in neonatal HI injured rats.
    Acta neurochirurgica. Supplement 01/2011; 111:207-12.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral edema is a devastating consequence of brain injury leading to cerebral blood flow compromise and worsening parenchyma damage. In the present study, we investigated the effects of arginine-vasopressin (AVP) V(1a) receptor inhibition following an intracerebral hemorrhagic (ICH) brain injury in mice and closely assessed the role it played in cerebral edema formation, neurobehavioral functioning, and blood-brain-barrier (BBB) disruption. To support our investigation, SR49059, an AVP V(1a) receptor competitive antagonist, and NC1900, an arginine-vasopressin analogue, were used. Male CD1 mice (n=205) were randomly assigned to the following groups: naïve, sham, ICH, ICH with SR49059 at 0.5 mg/kg, ICH with SR49059 at 2mg/kg, ICH with NC1900 at 1 ng/kg, ICH with NC1900 at 10 ng/kg, and ICH with a combination of SR49059 at 2 mg/kg and NC1900 at 10 ng/kg. ICH was induced by using the collagenase injection model and treatment was given 1h after surgery. Post assessment was conducted at 6, 12, 24, and 72 h after surgery and included brain water content, neurobehavioral testing, Evans Blue assay, western blotting, and hemoglobin assay. The study found that inhibition of the AVP V(1a) receptor significantly reduced cerebral edema at 24 and 72 h post-ICH injury and improved neurobehavioral function while reducing BBB disruption at 72 h. Western blot analysis demonstrated increased protein expression of aquaporin 4 (AQP4) in vehicle, which was reduced with AVP V(1a) receptor inhibition. Our study suggests that blockage of the AVP V(1a) receptor, is a promising treatment target for improving ICH-induced brain injury. Further studies will be needed to confirm this relationship and determine future clinical direction.
    Neurochemistry International 01/2011; 58(4):542-8. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracerebral hemorrhage (ICH) is a devastating stroke subtype characterized by severe brain edema formation leading to cerebral blood flow compromise and parenchymal damage. Arginine vasopressin (AVP), a non-peptide antidiuretic hormone, has recently been implicated as a modulator of brain edema following injury. In this study, we investigated the effects of SR49059, a highly specific AVP V1a receptor antagonist, on brain injury outcomes following ICH, specifically assessing the ability of SR49059 in reducing brain edema and improving neurobehavioral deficits. Male CD1 mice (n=35) were randomly assigned to the following groups: sham, ICH, ICH with SR49059 at 0.5 mg/kg, and ICH with SR49059 at 2 mg/kg. ICH was induced by using the collagenase injection model, and treatment was given 1 h after surgery. Post-assessment was conducted at 24 and 72 h after surgery, and included brain water content and neurobehavioral testing. The study found that SR49059 significantly reduced cerebral edema at 24 and 72 h post-ICH injury and improved neurobehavioral deficits at 72 h. Our study suggests that blockage of the AVP V1a receptor is a promising treatment target for improving ICH-induced brain injury. Further studies will be needed to confirm this relationship and determine future clinical direction.
    Acta neurochirurgica. Supplement 01/2011; 111:191-6.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surgically induced brain injury (SBI) is a common concern after a neurosurgical procedure. Current treatments aimed at reducing the postoperative sequela are limited. Granulocyte-colony stimulating factor (G-CSF), a hematopoietic growth factor involved in the inflammatory process, has been shown in various animal models to be neuroprotective. Consequently, in this study, we investigated the use of G-CSF as a treatment modality to reduce cell death and brain edema, while improving neurobehavioral deficits following an SBI in mice. Eleven-week-old C57 black mice (n=76) were randomly placed into four groups: sham (n=19), SBI (n=21), SBI with G-CSF pre-treatment (n=15) and SBI with G-CSF pre/post-treatment (n=21). Treated groups received a single dose of G-CSF intraperitoneally at 24, 12 and 1 h pre-surgery and/or 6 and 12 h post-surgery. Postoperative assessment occurred at 24 h and included neurobehavioral testing and measurement for both cell death and brain edema. Results indicated that pre-treatment with G-CSF reduced both cell death and brain edema, while post-treatment reduced neurobehavioral deficits. This study implies that the morphological changes in the brain are effected by pre-treatment; however, in order to activate and/or amplify targets involved in the recovery process, more dosing regimens may be needed.
    Acta neurochirurgica. Supplement 01/2011; 111:265-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent trials have shown that the prostaglandin E2 EP1 receptor is responsible for NMDA excitotoxicity in the brain after injury. Consequently, in this study, we investigated the use of SC-51089, a selective prostaglandin E2 EP1 receptor antagonist, as a pre-treatment modality to decrease cell death, reduce brain edema, and improve neurobehavioral function after surgically induced brain injury (SBI) in mice. Eleven-week-old C57 black mice (n=82) were randomly assigned to four groups: sham (n=31), SBI (n=27), SBI treated with SC51089 at 10 μg/kg (n=7), and SBI treated with SC51089 at 100 μg/kg (n=17). Treated groups received a single dose of SC51089 intrapertioneally at 12 and 1 h pre-surgery. SBI was performed by resecting the right frontal lobe using a frontal craniotomy. Postoperative assessment occurred at 24 and 72 h, and included neurobehavioral testing and measurement of brain water content and cell death. Results indicated that neither low- nor high-dose EP1 receptor inhibition protected against the SBI-related effects on brain edema formation or cell death. There was however a significant improvement in neurobehavioral function 24 h post-SBI with both dosing regimens. Further studies will be needed to assess the potential therapeutic role of EP1 receptor targeting in SBI.
    Acta neurochirurgica. Supplement 01/2011; 111:277-81.
  • Steve Lee, Ihab Dorotta, Robert Martin
    Journal of Critical Care. 12/2010; 25(4):e21.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surgical brain injury (SBI) to normal brain tissue can occur as inevitable sequelae of neurosurgical operations. SBI can contribute to post-operative complications such as brain edema following blood-brain barrier (BBB) disruption leading to neurological deficits. Melatonin is a commonly used drug with known antioxidant properties and neuroprotective effects in experimental animal studies (Chen et al., J Pineal Res 41:175-182, 2006; Chen et al., J Pineal Res 40(3):242-250, 2006; Cheung, J Pineal Res 34:153-160, 2003; Lee et al., J Pineal Res 42(3):297-309, 2007; Reiter et al., Exp Biol Med (Maywood) 230(2):104-117, 2005). We tested different concentrations of melatonin (5 mg/kg, 15 mg/kg and 150 mg/kg) administered 1 hour before surgery for neuroprotection against SBI using a rodent model. Post-operative assessment included brain water content (brain edema), lipid peroxidation assays (oxidative stress), and neurological assessment. The results showed a trend in decreasing brain edema with lower doses of melatonin (5 mg/kg and 15 mg/ kg), however, high concentration of melatonin (150 mg/kg) significantly increased brain edema compared to all other groups. This deleterious effect of high-dose melatonin was also observed in lipid-peroxidation assay wherein lower-dose melatonin (15 mg/kg) attenuated oxidative stress, but high-dose melatonin (150 mg/kg) increased oxidative stress as compared to vehicle-treated group. Furthermore, high-dose melatonin also worsened neurological outcomes compared to other groups whereas; the low-dose melatonin group (15 mg/kg) showed some improved neurological parameters. The study suggests that low-dose melatonin may provide neuroprotective effects against SBI. Further studies are needed to confirm this. More importantly, the findings of the study stress the need to carefully reassess safety issues with high doses of melatonin, which is considered to be a practically non-toxic drug.
    Acta neurochirurgica. Supplement 02/2008; 102:367-71.
  • [Show abstract] [Hide abstract]
    ABSTRACT: HMG-CoA reductase inhibitors (Statins) have been shown to reduce blood brain barrier (BBB) disruption and improve neurologic outcome in cerebrovascular disorders. Brain injury due to neurosurgical procedures can lead to post-operative complications such as brain edema and altered neurologic function. The objective of this study was to evaluate whether simvastatin reduces brain edema by preventing BBB disruption and improves neurologic status after surgically-induced brain injury (SBI). Animals were pretreated for seven days with vehicle or simvastatin i.p. daily, after which they underwent SBI. Neurologic evaluation was assessed at 24 hours post-SBI and the animals were sacrificed for brain water content calculation and BBB evaluation. Brain water content was significantly increased in the right frontal lobe in all SBI groups as compared to the left frontal lobe. There was no significant difference in brain water content in the right frontal lobe between simvastatin and vehicle treated groups. Evans blue testing did not show a significant difference in disruption of the BBB between groups. Neurologic scores were not significantly different. Simvastatin did not reduce brain water content, protect the BBB, or improve neurologic scores after SBI.
    Acta neurochirurgica. Supplement 02/2008; 102:401-4.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypertonic saline (HTS) has been proposed as a treatment after aneurysmal subarachnoid hemorrhage (SAH) to minimize ischemic brain injury due to its osmotic and rheologic properties. Although the benefits of 7.2% HTS use in brain injury have been studied, there is a paucity of data on the use of 3%HTS. We investigated whether 3%HTS can reduce brain water content and improve neurologic function after SAH in the rodent model compared to 0.9% saline solution (NS). Neurologic testing was conducted at 24 hours post-SAH prior to sacrificing animals for brain water content evaluation. There was significant potentiation of brain water content in the right hemisphere between 3%HTS and NS groups. The modified Garcia score was not significantly different between the two groups; however, the vibrissae-stimulated forelimb placement test showed significantly lower scores in the HTS group. 3%HTS does not decrease brain edema or improve neurologic deficits as compared to NS. In fact, our study showed 3%HTS potentiated brain edema and worsened neurologic deficits in the rat SAH model. Given the potential adverse effects of HTS therapies, including hyperchloremic acidosis, and the lack of benefit found in our study, more investigation is required to evaluate the clinical use of 3%HTS in the setting of SAH.
    Acta neurochirurgica. Supplement 02/2008; 102:405-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress largely contributes to early brain injury after subarachnoid hemorrhage (SAH). One of the major sources of reactive oxygen species is NADPH oxidase, upregulated after SAH. We hypothesized that NADPH oxidase-induced oxidative stress plays a major causative role in early brain injury after SAH. Using gp91phox knockout (ko) and wild-type (wt) mice, we studied early brain injury in the endovascular perforation model of SAH. Mortality rate, cerebral edema, oxidative stress, and superoxide production were measured at 24 h after SAH. Neurological evaluation was done at 23 h after SAH surgery. Genotyping confirmed the existence of a nonfunctional gp91phox gene in the ko mice. CBF measurements did not show differences in SAH-induced acute ischemia between ko and wt mice. SAH caused a significant increase of water content in the ipsilateral hemisphere as well as an increase of Malondialdehyde (MDA) levels and superoxide production. There were no significant differences in post-SAH mortality rate, brain water content and the intensity of the oxidative stress between knockout and wild type groups of mice. Our results suggest that gp91phox is not critically important to the early brain injury after SAH. An adaptive compensatory mechanism for free radical production in knockout mice is discussed.
    The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques 09/2007; 34(3):356-61. · 1.33 Impact Factor