S P Deb

State University of New York, New York City, New York, United States

Are you S P Deb?

Claim your profile

Publications (3)12.43 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have compared the ATPase, DNA-binding, and helicase activities of free simian virus 40 (SV40) large T antigen (To) and T antigen complexed with cellular p53 (T+p53). Each activity is essential for productive viral infection. The T+p53 and To fractions were prepared by sequential immunosorption of infected monkey cells with monoclonal antibodies specific for p53 and T antigen. The immune-complexed T fractions were then assayed in parallel. For ATP hydrolysis, the Vmax for T+p53 was 143 nmol of ADP per min per mg of protein, or 18-fold greater than for To. ATP had no effect on the stability of the T+p53 complex. The T+p53 complex was significantly more active than To in hydrolyzing dATP, dGTP, GTP, and UTP. Of the nucleotide substrates tested, the greatest relative increase (T+p53/To) was in hydrolyzing dGTP and GTP. In DNase footprinting assays performed under replication conditions, the T+p53 complex protected regions I, II, and III of origin DNA while equivalent amounts of To protected only regions I and II. Region III is known to contribute to the efficiency of DNA replication and contains the SP1-binding sites of the early viral promoter. The T+p53 fraction was also a more efficient helicase than To, especially with a GC-rich primer and template. Thus, the T+p53 complex has enhanced ATPase, GTPase, DNA-binding, and helicase activities. These findings imply that complex formation between cellular monkey p53 and SV40 T antigen modulates a number of essential activities of T in SV40 productive infection.
    Journal of Virology 04/1989; 63(3):1310-7. · 5.08 Impact Factor
  • S P Deb, K Partin
    [Show abstract] [Hide abstract]
    ABSTRACT: SV40 T antigen exists in monomeric and multimeric forms. We have separated the individual components by glycerol gradient centrifugation. Helicase activity is found to be associated with monomeric forms only. Dimers and other multimeric forms have no discernable helicase activity. However, results obtained from DNA binding experiments carried out with separated forms of T antigen indicate that both monomers and dimers bind to region I and region II of SV40 origin of replication. Possibly monomeric T antigen unwinds DNA at the replication fork while both monomeric and dimeric forms are utilized for positioning of T antigen at the origin of replication.
    Biochemical and Biophysical Research Communications 06/1988; 153(1):249-55. · 2.28 Impact Factor
  • Source
    S P Deb, P Tegtmeyer
    [Show abstract] [Hide abstract]
    ABSTRACT: Simian virus 40 large T antigen initiates DNA replication by binding to the origin of replication. We examined the binding of T antigen to origin regions I, II, and III under conditions designed for efficient in vitro replication functions. We found that 4 mM ATP enhanced the binding of T antigen to regions I and II of the origin DNA by 4- to 20-fold. DNase-footprinting and fragment assays showed that ATP extended the DNase protection domain of T antigen bound to region II by 5 to 10 base pairs at both ends of the core origin of replication. This alteration suggests a change in the conformation of T antigen, bound DNA, or both.
    Journal of Virology 01/1988; 61(12):3649-54. · 5.08 Impact Factor