Bradford B Lowell

Harvard University, Cambridge, Massachusetts, United States

Are you Bradford B Lowell?

Claim your profile

Publications (150)1899.7 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether melanocortin 4 receptors (MC4Rs) in extra-hypothalamic neurons, including cholinergic autonomic pre-ganglionic neurons, are required to control energy and glucose homeostasis is unclear. We found that MC4Rs in sympathetic, but not parasympathetic, pre-ganglionic neurons were required to regulate energy expenditure and body weight, including thermogenic responses to diet and cold exposure and 'beiging' of white adipose tissue. Deletion of Mc4r genes in both sympathetic and parasympathetic cholinergic neurons impaired glucose homeostasis.
    Nature neuroscience. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adipocyte-derived hormone leptin plays a critical role in the central transmission of energy balance to modulate reproductive function. However, the neurocircuitry underlying this interaction remains elusive, in part due to incomplete knowledge of first-order leptin-responsive neurons. To address this gap, we explored the contribution of predominantly inhibitory (GABAergic) neurons versus excitatory (glutamatergic) neurons in the female mouse by selective ablation of the leptin receptor in each neuronal population: Vgat-Cre;Lepr(lox/lox) and Vglut2-Cre;Lepr(lox/lox) mice, respectively. Female Vgat-Cre;Lepr(lox/lox) but not Vglut2-Cre;Lepr(lox/lox) mice were obese. Vgat-Cre;Lepr(lox/lox) mice had delayed or absent vaginal opening, persistent diestrus, and atrophic reproductive tracts with absent corpora lutea. In contrast, Vglut2-Cre;Lepr(lox/lox) females exhibited reproductive maturation and function comparable to Lepr(lox/lox) control mice. Intracerebroventricular administration of kisspeptin-10 to Vgat-Cre;Lepr(lox/lox) female mice elicited robust gonadotropin responses, suggesting normal gonadotropin-releasing hormone neuronal and gonadotrope function. However, adult ovariectomized Vgat-Cre;Lepr(lox/lox) mice displayed significantly reduced levels of Kiss1 (but not Tac2) mRNA in the arcuate nucleus, and a reduced compensatory luteinizing hormone increase compared with control animals. Estradiol replacement after ovariectomy inhibited gonadotropin release to a similar extent in both groups. These animals also exhibited a compromised positive feedback response to sex steroids, as shown by significantly lower Kiss1 mRNA levels in the AVPV, compared with Lepr(lox/lox) mice. We conclude that leptin-responsive GABAergic neurons, but not glutamatergic neurons, act as metabolic sensors to regulate fertility, at least in part through modulatory effects on kisspeptin neurons.
    Journal of Neuroscience 04/2014; 34(17):6047-56. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.
    Nature 02/2014; · 38.60 Impact Factor
  • Alastair S Garfield, Bradford B Lowell
    [Show abstract] [Hide abstract]
    ABSTRACT: Aversive visceral stimuli, such as those associated with sickness, suppress appetite. Yet an understanding of the neural mechanisms underlying illness-related anorexia has remained elusive. Carter et al. (2013) now identify a specific hindbrain → amygdala circuit that contributes to illness-induced loss of appetite.
    Cell metabolism 12/2013; 18(6):769-70. · 17.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key brain sites that mediate melanocortin action. We conditionally restored MC4R expression in Sim1 neurons in the background of Mc4r-null mice. The restoration dramatically reduced obesity in Mc4r-null mice. The anti-obesity effect was completely reversed by selective disruption of glutamate release from those same Sim1 neurons. The reversal was caused by lower energy expenditure and hyperphagia. Corroboratively, selective disruption of glutamate release from adult PVH neurons led to rapid obesity development via reduced energy expenditure and hyperphagia. Thus, this study establishes glutamate as the primary neurotransmitter that mediates MC4Rs on Sim1 neurons in body weight regulation.
    Cell metabolism 12/2013; 18(6):860-70. · 17.35 Impact Factor
  • Source
  • Source
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (neuropeptide Y [NPY] and Agouti-related peptide [AgRP]). This raises questions as to their respective functions. The acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY, or GABA agonist results in the marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. After the acute stimulation of AgRP neurons with DREADD technology, we found that either GABA or NPY is required for the rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating.
    Cell metabolism 10/2013; 18(4):588-595. · 17.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dogma that life without insulin is incompatible has recently been challenged by results showing the viability of insulin-deficient rodents undergoing leptin monotherapy. Yet, the mechanisms underlying these actions of leptin are unknown. Here, the metabolic outcomes of intracerebroventricular (i.c.v.) administration of leptin in mice devoid of insulin and lacking or re-expressing leptin receptors (LEPRs) only in selected neuronal groups were assessed. Our results demonstrate that concomitant re-expression of LEPRs only in hypothalamic γ-aminobutyric acid (GABA) and pro-opiomelanocortin (POMC) neurons is sufficient to fully mediate the lifesaving and antidiabetic actions of leptin in insulin deficiency. Our analyses indicate that enhanced glucose uptake by brown adipose tissue and soleus muscle, as well as improved hepatic metabolism, underlies these effects of leptin. Collectively, our data elucidate a hypothalamic-dependent pathway enabling life without insulin and hence pave the way for developing better treatments for diseases of insulin deficiency.
    Cell metabolism 09/2013; 18(3):431-44. · 17.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin (POMC)- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Herge we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1 deficient mice displayed central leptin resistance, as evidenced by impaired STAT3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support prior work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of anti-obesity therapeutics.
    Endocrinology 07/2013; · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Compulsive behavior is a debilitating clinical feature of many forms of neuropsychiatric disease, including Tourette syndrome, obsessive-compulsive spectrum disorders, eating disorders, and autism. Although several studies link striatal dysfunction to compulsivity, the pathophysiology remains poorly understood. Here, we show that both constitutive and induced genetic deletion of the gene encoding the melanocortin 4 receptor (MC4R), as well as pharmacologic inhibition of MC4R signaling, normalize compulsive grooming and striatal electrophysiologic impairments in synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3)-null mice, a model of human obsessive-compulsive disorder. Unexpectedly, genetic deletion of SAPAP3 restores normal weight and metabolic features of MC4R-null mice, a model of human obesity. Our findings offer insights into the pathophysiology and treatment of both compulsive behavior and eating disorders.
    Proceedings of the National Academy of Sciences 06/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucagon is important for maintaining euglycemia during fasting/starvation, and abnormal glucagon secretion is associated with type 1 and type 2 diabetes; however, the mechanisms of hypoglycemia-induced glucagon secretion are poorly understood. We previously demonstrated that global deletion of mitochondrial uncoupling protein 2 (UCP2(-/-)) in mice impaired glucagon secretion from isolated islets. Therefore, UCP2 may contribute to the regulation of hypoglycemia-induced glucagon secretion, which is supported by our current finding that UCP2 expression is increased in nutrient-deprived murine and human islets. Further to this, we created α-cell-specific UCP2 knockout (UCP2AKO) mice, which we used to demonstrate that blood glucose recovery in response to hypoglycemia is impaired owing to attenuated glucagon secretion. UCP2-deleted α-cells have higher levels of intracellular reactive oxygen species (ROS), due to enhanced mitochondrial coupling, which translated into defective stimulus/secretion coupling. The effects of UCP2 deletion were mimicked by the UCP2 inhibitor genipin on both murine and human islets and also by application of exogenous ROS, confirming that changes in oxidative status and electrical activity directly reduce glucagon secretion. Therefore, α-cell UCP2 deletion perturbs the fasting/hypoglycemic glucagon response and shows that UCP2 is necessary for normal α-cell glucose sensing and the maintenance of euglycemia.
    Diabetes 02/2013; · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are probably dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined. Here, we show that MC4R agonists inhibit parasympathetic preganglionic neurons in the brainstem. In contrast, MC4R agonists activate sympathetic preganglionic neurons in the spinal cord. Deletion of MC4Rs in cholinergic neurons resulted in elevated levels of insulin. Furthermore, re-expression of MC4Rs specifically in cholinergic neurons (including sympathetic preganglionic neurons) restores obesity-associated hypertension in MC4R null mice. These findings provide a cellular correlate of the autonomic side effects associated with MC4R agonists and demonstrate a role for MC4Rs expressed in cholinergic neurons in the regulation of insulin levels and in the development of obesity-induced hypertension.
    Cell 01/2013; 152(3):612-9. · 31.96 Impact Factor
  • Shan Lou, Bo Duan, Linh Vong, Bradford B Lowell, Qiufu Ma
    [Show abstract] [Hide abstract]
    ABSTRACT: VGLUT3-expressing unmyelinated low-threshold mechanoreceptors (C-LTMRs) are proposed to mediate pleasant touch and/or pain, but the molecular programs controlling C-LTMR development are unknown. Here, we performed genetic fate mapping, showing that VGLUT3 lineage sensory neurons are divided into two groups, based on transient or persistent VGLUT3 expression. VGLUT3-transient neurons are large- or medium-diameter myelinated mechanoreceptors that form the Merkel cell-neurite complex. VGLUT3-persistent neurons are small-diameter unmyelinated neurons that are further divided into two subtypes: (1) tyrosine hydroxylase (TH)-positive C-LTMRs that form the longitudinal lanceolate endings around hairs, and (2) TH-negative neurons that form epidermal-free nerve endings. We then found that VGLUT3-persistent neurons express the runt domain transcription factor Runx1. Analyses of mice with a conditional knock-out of Runx1 in VGLUT3 lineage neurons demonstrate that Runx1 is pivotal to the development of VGLUT3-persistent neurons, such as the expression of VGLUT3 and TH and the formation of the longitudinal lanceolate endings. Furthermore, Runx1 is required to establish mechanosensitivity in C-LTMRs, by controlling the expression of the mechanically gated ion channel Piezo2. Surprisingly, both acute and chronic mechanical pain was largely unaffected in these Runx1 mutants. These findings appear to argue against the recently proposed role of VGLUT3 in C-LTMRs in mediating mechanical hypersensitivity induced by nerve injury or inflammation. Thus, our studies provide new insight into the genetic program controlling C-LTMR development and call for a revisit for the physiological functions of C-LTMRs.
    Journal of Neuroscience 01/2013; 33(3):870-82. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural regulation of energy expenditure is incompletely understood. By genetically disrupting GABAergic transmission in a cell-specific fashion, and by combining this with selective pharmacogenetic activation and optogenetic mapping techniques, we have uncovered an arcuate-based circuit that selectively drives energy expenditure. Specifically, mice lacking synaptic GABA release from RIP-Cre neurons have reduced energy expenditure, become obese and are extremely sensitive to high-fat diet-induced obesity, the latter due to defective diet-induced thermogenesis. Leptin's ability to stimulate thermogenesis, but not to reduce feeding, is markedly attenuated. Acute, selective activation of arcuate GABAergic RIP-Cre neurons, which monosynaptically innervate PVH neurons projecting to the NTS, rapidly stimulates brown fat and increases energy expenditure but does not affect feeding. Importantly, this response is dependent upon GABA release from RIP-Cre neurons. Thus, GABAergic RIP-Cre neurons in the arcuate selectively drive energy expenditure, contribute to leptin's stimulatory effect on thermogenesis, and protect against diet-induced obesity.
    Cell 10/2012; 151(3):645-57. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptin regulates energy balance. However, knowledge of the critical intracellular transducers of leptin signaling remains incomplete. We found that Rho-kinase 1 (ROCK1) regulates leptin action on body weight homeostasis by activating JAK2, an initial trigger of leptin receptor signaling. Leptin promoted the physical interaction of JAK2 and ROCK1, thereby increasing phosphorylation of JAK2 and downstream activation of Stat3 and FOXO1. Mice lacking ROCK1 in either pro-opiomelanocortin (POMC) or agouti-related protein neurons, mediators of leptin action, displayed obesity and impaired leptin sensitivity. In addition, deletion of ROCK1 in the arcuate nucleus markedly enhanced food intake, resulting in severe obesity. Notably, ROCK1 was a specific mediator of leptin, but not insulin, regulation of POMC neuronal activity. Our data identify ROCK1 as a key regulator of leptin action on energy homeostasis.
    Nature Neuroscience 09/2012; 15(10):1391-8. · 15.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural activity during development critically shapes postnatal wiring of the mammalian brain. This is best illustrated by the sensory systems, in which the patterned feed-forward excitation provided by sensory organs and experience drives the formation of mature topographic circuits capable of extracting specific features of sensory stimuli. In contrast, little is known about the role of early activity in the development of the basal ganglia, a phylogenetically ancient group of nuclei fundamentally important for complex motor action and reward-based learning. These nuclei lack direct sensory input and are only loosely topographically organized, forming interlocking feed-forward and feed-back inhibitory circuits without laminar structure. Here we use transgenic mice and viral gene transfer methods to modulate neurotransmitter release and neuronal activity in vivo in the developing striatum. We find that the balance of activity between the two inhibitory and antagonist pathways in the striatum regulates excitatory innervation of the basal ganglia during development. These effects indicate that the propagation of activity through a multi-stage network regulates the wiring of the basal ganglia, revealing an important role of positive feedback in driving network maturation.
    Nature 05/2012; 485(7400):646-50. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying neuronal molecular markers with restricted patterns of expression is a crucial step in dissecting the numerous pathways and functions of the brain. While the dorsomedial nucleus of the hypothalamus (DMH) has been implicated in a host of physiological processes, current functional studies have been limited by the lack of molecular markers specific for DMH. Identification of such markers would facilitate the development of mouse models with DMH-specific genetic manipulations. Here we used a combination of laser-capture microdissection (LCM) and gene expression profiling to identify genes that are highly expressed within the DMH relative to adjacent hypothalamic regions. Six of the most highly expressed of these genes, Gpr50, 4930511J11Rik, Pcsk5, Grp, Sulf1, and Rorβ, were further characterized by real-time polymerase chain reaction (PCR) analysis and in situ hybridization histochemistry. The genes identified in this article will provide the basis for future gene-targeted approaches for studying DMH function. J. Comp. Neurol. 520:3617-3632, 2012. © 2012 Wiley Periodicals, Inc.
    The Journal of Comparative Neurology 04/2012; 520(16):3617-32. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles in controlling AgRP neurons and determining the cellular and behavioral response to fasting.
    Neuron 02/2012; 73(3):511-22. · 15.77 Impact Factor

Publication Stats

19k Citations
1,899.70 Total Impact Points

Institutions

  • 2009–2014
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2008–2013
    • University of Texas Southwestern Medical Center
      • • Division of Hypothalamic Research
      • • Department of Internal Medicine
      Dallas, TX, United States
  • 2002–2013
    • University of Toronto
      • • Department of Physiology
      • • Department of Medicine
      Toronto, Ontario, Canada
  • 1997–2013
    • Harvard Medical School
      • • Department of Medicine
      • • Department of Cell Biology
      Boston, Massachusetts, United States
  • 1991–2012
    • Beth Israel Deaconess Medical Center
      • Department of Medicine
      Boston, MA, United States
  • 2010
    • Boston Children's Hospital
      • Division of Endocrinology
      Boston, MA, United States
    • University of Toledo
      • Center for Diabetes and Endocrine Research
      Toledo, OH, United States
  • 1989–2001
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States
  • 1998
    • University of Hamburg
      • Department of Internal Medicine II and Clinic (Oncology Center)
      Hamburg, Hamburg, Germany
  • 1996
    • Beth Israel Medical Center
      New York City, New York, United States