Wenke Feng

University of Louisville, Louisville, Kentucky, United States

Are you Wenke Feng?

Claim your profile

Publications (56)224.64 Total impact

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic liver disease (ALD) has a high morbidity and mortality. Chronic alcohol consumption causes disruption of intestinal microflora homeostasis, intestinal tight junction barrier dysfunction, increased endotoxemia, and eventually liver steatosis/steatohepatitis. Probiotic Lactobacillus rhamnosus GG (LGG) and the bacteria-free LGG culture supernatant (LGGs) have been shown to promote intestinal epithelial integrity and protect intestinal barrier function in ALD. However, little is known about how LGGs mechanistically works to increase intestinal tight junction proteins. Here we show that chronic ethanol exposure increased intestinal miR122a expression, which decreased occludin expression leading to increased intestinal permeability. Moreover, LGGs supplementation decreased ethanol-elevated miR122a level and attenuated ethanol-induced liver injury in mice. Similar to the effect of ethanol exposure, overexpression of miR122a in Caco-2 monolayers markedly decreased occludin protein levels. In contrast, inhibition of miR122a increased occludin expression. We conclude that LGGs supplementation functions in intestinal integrity by inhibition of miR122a, leading to occludin restoration in mice exposed to chronic ethanol. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Toxicology Letters 03/2015; DOI:10.1016/j.toxlet.2015.03.002 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interactions between gut, liver and immune system play an important role in liver disease. Probiotics have been used in treatment and prevention of many pathological conditions, including liver diseases. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) was used herein, in conjunction with chemometric data analysis, to identify metabolites significantly affected by probiotics in mice fed with or without alcohol. The metabolomics analysis indicates the levels of fatty acids increased in mouse liver and decreased in mouse feces when mice were chronically exposed to alcohol. Lactobacillus rhamnosus GG culture supernatant (LGGs) supplementation to the alcohol-fed mice normalized these alcohol-induced abnormalities, and prevented alcoholic liver disease (ALD). These results agree well with previous studies. In addition to diet-derived long chain fatty acids (LCFAs), LGGs may positively modify gut bacterial population to stimulate LCFA synthesis, which has been shown to enhance intestinal barrier function, reduce endotoxemia, and prevent ALD. We also found that several amino acids, including L-isoleucine, a branched chain amino acid, were down regulated in the liver and fecal samples from animals exposed to alcohol, and the abundance levels of these amino acids were corrected by LGGs. These results demonstrate that LGGs alleviates alcohol-induced fatty liver by the mechanisms involving increasing intestinal and decreasing hepatic fatty acids and increasing amino acid concentration.
    Journal of Proteome Research 01/2015; DOI:10.1021/pr501121c · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor 21 (FGF21) is a metabolic regulator that is required for normal spermatogenesis and protects against diabetes-induced germ cell apoptosis. Here we tried to define whether diabetes-induced germ cell apoptosis that is predominantly due to increased oxidative stress was associated with impaired glucose and fatty acid metabolism, by examining the effects of Fgf21 gene deletion (FGF21-KO) or FGF21 treatment on the glucose and fatty acid metabolic pathways in streptozotocin-induced diabetic mice. Western blots revealed that AKT-mediated glucose signaling was down-regulated in diabetic testes and further decreased in FGF21-KO diabetic group both 10 days and 2 months after diabetes onset, reflected by reduced GSK-3β phosphorylation and increased GS phosphorylation. Deletion of the Fgf21 gene also inactivated fatty acid metabolism-related factors, AMPK, Sirt1 and PGC-1α, along with exacerbating diabetes-induced testicular oxidative stress and damage. Treatment with recombinant FGF21 partially prevented these diabetic effects. In FGF21-KO non-diabetic mice, testicular AMPK/Sirt1/PGC-1α signaling was down-regulated and AKT1 and MDM2 were inactivated along with the increased p53 expression, but not AKT2, GSK-3β and GS. These results suggest that the role of FGF21 in maintaining spermatogenesis is associated with its activation of AKT1 and inhibition of p53. Deletion of the Fgf21gene significantly exacerbates diabetes-induced down-regulation of testicular AKT/GSK-3β/GS and AMPK/Sirt1/PGC-1α pathways and testicular oxidative stress and cell apoptosis.
    Endocrinology 01/2015; DOI:10.1210/en.2014-1619 · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that Lactobacillus rhamnosus GG culture supernatant (LGGs) prevents acute-alcohol-exposure-induced hepatic steatosis and injury. The protective effects of LGGs were attributed to the improved intestinal barrier function leading to decreased endotoxemia. The purpose of this study was to determine whether LGGs was effective in protecting against chronic-alcohol-induced hepatic steatosis and injury and to evaluate the underlying mechanisms of LGGs on hepatic lipid metabolism. C57BL/6N mice were fed liquid diet containing 5% alcohol or pair-fed isocaloric maltose dextrin for 4 weeks. LGGs at a dose equivalent to 10(9) CFU/day/mouse was given in the liquid diet. Hepatic steatosis, liver enzymes and hepatic apoptosis were analyzed. LGGs prevented alcohol-mediated increase in hepatic expression of lipogenic genes, sterol regulatory element binding protein-1 and stearoyl-CoA desaturase-1 and increased the expression of peroxisome proliferator activated receptor-α, peroxisome proliferator-activated receptor gamma coactivator protein-1α and carnitine palmitoyltransferase-1, leading to increased fatty acid β-oxidation. Importantly, chronic alcohol exposure decreased adenosine-monophosphate-activated protein kinase (AMPK) phosphorylation and increased acetyl-CoA carboxylase activity, which were attenuated by LGGs administration. LGGs also decreased Bax expression and increased Bcl-2 expression, which attenuated alcohol-induced hepatic apoptosis. These LGGs-regulated molecular changes resulted in the attenuation of chronic-alcohol-exposure-mediated increase in hepatic fat accumulation and liver injury. Probiotic LGG culture supernatant is effective in the prevention of chronic-alcohol-exposure-induced hepatic steatosis and injury. LGGs likely exerts its beneficial effects, at least in part, through modulation of hepatic AMPK activation and Bax/Bcl-2-mediated apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.
    The Journal of Nutritional Biochemistry 12/2014; DOI:10.1016/j.jnutbio.2014.10.016 · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert-Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress-induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.
    Journal of Cellular and Molecular Medicine 12/2014; DOI:10.1111/jcmm.12346 · 3.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a main clinical feature of obstructive sleep apnea (OSA), intermittent hypoxia (IH) induces oxidative stress, leading to damage to a variety of organs, including kidney. Metallothionein (MT) is a potent antioxidant that protects kidney against oxidative damage. Our previous studies demonstrated that MT prevented IH-induced cardiomyopathy in mice. However, the role of MT in protecting against IH-induced renal injury is unknown. Therefore, MT knockout (MT KO) mice and wild type (WT) control mice (129S) were culled for exposure to intermittent air as control or IH for a time course of 3 days, 1 week, 3 weeks and 8 weeks. MT KO mice developed higher urinary albumin to creatinine ratio (UACR) after exposure to IH for 8 weeks. Compared with either MT KO control or WT IH mice, MT deletion significantly aggravated IH-induced renal oxidative damage and inflammation at all four time points, along with significant acceleration of renal fibrosis after exposure to IH for 3 weeks and 8 weeks. Antioxidants including MT, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase 1 (HO1) and NAD (P) H dehydrogenase [quinone] 1 (NQO1) were increased in response to short-term IH (3 days, 1 week and 3 weeks) but decreased after long-term IH (8 weeks) in WT mice. Interestingly, Nrf2, HO1 and NQO1 were significantly attenuated under IH conditions in the absence of MT, which were in parallel with the inactivation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK). These findings demonstrated that MT played a key role in preventing IH-induced renal injury possibly via preserving Nrf2 signaling pathway.
    Toxicology Letters 11/2014; 232(2). DOI:10.1016/j.toxlet.2014.11.015 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson's disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood-brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.
    Molecular Neurobiology 06/2014; DOI:10.1007/s12035-014-8750-5 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress, an adaptive response normally, causes apoptotic cell death under pathological conditions. Cardiac ER stress and associated cell death involve in the inflammatory responses that often cause cardiac remodeling and dysfunction. Here we examined whether chronic intermittent hypoxia (IH) induces cardiac ER stress and associate cell death along with inflammatory response and if so, whether these effects can be affected by transgenic overexpression or deletion of metallothionein gene (MT-TG or MT-KO). IH exposures for 3 days to 4 weeks significantly increased cardiac ER stress and apoptosis, shown by the increased expression of GRP78, ATF6 and CHOP, the activation of caspase-12 and capase-3, and the decreased Bcl2/Bax expression ratio, predominantly at the 3rd week of IH exposures. These effects were significantly exacerbated in MT-KO mice, but completely prevented in MT-TG mice. In vitro mechanistic study with H9c2 cardiac and primary neonatal cardiomyocytes showed that MT protection from ER stress-induced apoptosis was mediated by up-regulating Akt phosphorylation since inhibition of Akt phosphorylation abolished MT's protection MT from ER stress and apoptosis. These findings suggest that chronic IH is able to induce cardiac ER stress, cell death and inflammation can be prevented by MT, probably via up-regulation of Akt function.
    Toxicology Letters 06/2014; DOI:10.1016/j.toxlet.2014.03.011 · 3.36 Impact Factor
  • Gastroenterology 05/2014; 146(5):S-957. DOI:10.1016/S0016-5085(14)63486-7 · 13.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3days to 8weeks. The IH paradigm consisted of alternating cycles of 20.9% O2 /8% O2 FIO2 (30 episodes per hour) with 20seconds at the nadir FIO2 for 12h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4weeks with a decrease in cardiac function from 4 to 8weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes.
    Toxicology and Applied Pharmacology 05/2014; DOI:10.1016/j.taap.2014.03.007 · 3.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During periods of cellular hypoxia, hepatocytes adapt to consume less oxygen by shifting energy production from mitochondrial fatty acid β-oxidation to glycolysis. One of the earliest responses to pathologic hypoxia is the activation of the hypoxia-inducible factor (HIF). In the present study, we examined whether HIF-1 and HIF-2 were involved in the regulation of fatty acid synthesis and β-oxidation. We showed that hypoxia induced fat accumulation in the livers of mice and in HepG2 cells. These hypoxia-induced changes in fatty acid metabolism were mediated by suppressing fatty acid β-oxidation, without significantly influencing fatty acid synthesis. Exposing hepatocytes to 1% O2 reduced the mRNA expression of carnitine palmitoyltransferase 1 (CPT-1), which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for β-oxidation. Moreover, hypoxia exposure reduced proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein levels, which plays an important role in regulation of β-oxidation. Exposure of HIF-1α or HIF-2α deficient hepatocytes to hypoxia abrogated the reduction in PGC-1α and CPT-1 expression and cellular lipid accumulation observed in normal hepatocytes exposed to hypoxia. These results suggest that both HIF-1α and HIF-2α are involved in hypoxia-induced lipid accumulation in hepatocytes via reducing PGC-1α mediated fatty acid β-oxidation.
    Toxicology Letters 04/2014; DOI:10.1016/j.toxlet.2014.01.033 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The therapeutic effects of probiotic treatment in alcoholic liver disease (ALD) have been studied in both patients and experimental animal models. Although the precise mechanisms of the pathogenesis of ALD are not fully understood, gut-derived endotoxin has been postulated to play a crucial role in hepatic inflammation. Previous studies have demonstrated that probiotic therapy reduces circulating endotoxin derived from intestinal gram-negative bacteria in ALD. In this study, we investigated the effects of probiotics on hepatic tumor necrosis factor-α (TNFα) production and inflammation in response to chronic alcohol ingestion. Mice were fed Lieber DeCarli liquid diet containing 5% alcohol for 8weeks, and Lactobacillus rhamnosus GG (LGG) was supplemented in the last 2 weeks. Eight-week alcohol feeding caused a significant increase in hepatic inflammation as shown by histological assessment and hepatic tissue myeloperoxidase activity assay. Two weeks of LGG supplementation reduced hepatic inflammation and liver injury and markedly reduced TNFα expression. Alcohol feeding increased hepatic mRNA expression of Toll-like receptors (TLRs) and CYP2E1 and decreased nuclear factor erythroid 2-related factor 2 expression. LGG supplementation attenuated these changes. Using human peripheral blood monocytes-derived macrophages, we also demonstrated that incubation with ethanol primes both lipopolysaccharide- and flagellin-induced TNFα production, and LGG culture supernatant reduced this induction in a dose-dependent manner. In addition, LGG treatment also significantly decreased alcohol-induced phosphorylation of p38 MAP kinase. In conclusion, probiotic LGG treatment reduced alcohol-induced hepatic inflammation by attenuation of TNFα production via inhibition of TLR4- and TLR5-mediated endotoxin activation.
    The Journal of nutritional biochemistry 04/2013; DOI:10.1016/j.jnutbio.2013.02.001 · 4.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor 21 (FGF21) is a novel member identified and was reported to express predominantly in pancreas, liver and adipose tissue, and relatively less in other organs, such as the testis. However, the role of FGF21 in the testis has never been addressed. The present study examined FGF21 expression at mRNA level by real-time RT-PCR assay in the testis of fasting and non-fasting mice or mice with type 1 diabetes that was induced with streptozotocin. We also examined the effect of Fgf21 gene deletion or supplementation of the exogenous FGF21 on the testicular apoptotic cell death spontaneously or induced by type 1 diabetes in FGF21 knockout (FGF21-KO) mice. Deletion of Fgef21 gene does not affect testicular cell proliferation, but significantly increases the spontaneous incidence of testicular TUNEL positive cells with increases in the Bax/Bcl2 expression ratio and apoptosis-inducing factor (AIF) expression. Diabetes induced significant increases in testicular TUNEL positive cells, Bax/Bcl2 expression ratio, AIF expression, CHOP and cleaved caspase-12 expression, and oxidative damage, but did not change the expression of cleaved caspase-3 and caspase-8. Deletion of Fgf21 gene also significantly enhances diabetes-induced TUNEL positive cells along with the increased expression of Bax/Bcl2 ratio, AIF, CHOP, cleaved caspase-12, and oxidative damage, which was significantly prevented by the supplementation of exogenous FGF21. These results suggest that Fgf21 gene may involve in maintaining normal spermatogenesis and also protect the germ cells from diabetes-induced apoptotic cell death probably via the prevention of diabetes-induced oxidative damage.
    Toxicology Letters 03/2013; DOI:10.1016/j.toxlet.2013.02.022 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulation and induction of anergy in NKT cells of the liver can inhibit autoimmune and antitumor responses by mechanisms that are poorly understood. We investigated the effects of PGE2, delivered by intestinal, mucus-derived, exosome-like nanoparticles (IDENs), on NKT cells in mice. In this study, we demonstrate that IDENs migrate to the liver where they induce NKT cell anergy. These effects were mediated by an IDENs' PGE2. Blocking PGE2 synthesis attenuated IDENs inhibition of induction of IFN-γ and IL-4 by α-galactosylceramide (α-GalCer)-stimulated liver NKT cells in a PGE2 E-type prostanoid 2/E-type prostanoid 4 receptor-mediated manner. Proinflammatory conditions enhanced the migration of IDENs to the liver where α-GalCer and PGE2 induced NKT anergy in response to subsequent α-GalCer stimulation. These findings demonstrate that IDENs carrying PGE2 can be transferred from the intestine to the liver, where they act as immune modulators, inducing an anergic-like state of NKT cells. These reagents might be developed as therapeutics for autoimmune liver diseases.
    The Journal of Immunology 03/2013; 190(7). DOI:10.4049/jimmunol.1203170 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol and dietary fat both play an important role in alcohol-mediated multi-organ pathology, including gut and liver. In the present study we hypothesized that the combination of alcohol and dietary unsaturated fat (USF) would result in intestinal inflammatory stress and mucus layer alterations, thus contributing to disruption of intestinal barrier integrity. C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil/linoleic acid) or SF (medium chain triglycerides: beef tallow) for 8 weeks. Intestinal histology, morphometry, markers of inflammation, as well as levels of mucus protective factors were evaluated. Alcohol and dietary USF triggered an intestinal pro-inflammatory response, characterized by increase in Tnf-α, MCP1, and MPO activity. Further, alcohol and dietary USF, but not SF, resulted in alterations of the intestinal mucus layer, characterized by decreased expression of Muc2 in the ileum. A strong correlation was observed between down-regulation of the antimicrobial factor Cramp and increased Tnf-α mRNA. Therefore, dietary unsaturated fat (corn oil/LA enriched) is a significant contributing factor to EtOH-mediated intestinal inflammatory response and mucus layer alterations in rodents.
    Alcohol (Fayetteville, N.Y.) 02/2013; DOI:10.1016/j.alcohol.2013.01.005 · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD). Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v) for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG) from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.
    PLoS ONE 01/2013; 8(1):e53028. DOI:10.1371/journal.pone.0053028 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl(2)), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl(2) treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl(2) administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl(2)-induced reactive oxygen species (ROS) formation and completely negated CoCl(2)-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl(2) administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl(2) increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl(2)-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and absorption.
    Toxicology and Applied Pharmacology 08/2012; 264(2):212-21. DOI:10.1016/j.taap.2012.08.003 · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endotoxemia is a contributing cofactor to alcoholic liver disease (ALD), and alcohol-induced increased intestinal permeability is one of the mechanisms of endotoxin absorption. Probiotic bacteria have been shown to promote intestinal epithelial integrity and protect barrier function in inflammatory bowel disease (IBD) and in ALD. Although it is highly possible that some common molecules secreted by probiotics contribute to this action in IBD, the effect of probiotic culture supernatant has not yet been studied in ALD. We examined the effects of Lactobacillus rhamnosus GG culture supernatant (LGG-s) on the acute alcohol-induced intestinal integrity and liver injury in a mouse model. Mice on standard chow diet were supplemented with supernatant from LGG culture (10(9) colony-forming unit/mouse) for 5 days, and one dose of alcohol at 6 g/kg body wt was administered via gavage. Intestinal permeability was measured by FITC-FD-4 ex vivo. Alcohol-induced liver injury was examined by measuring the activity of alanine aminotransferase (ALT) in plasma, and liver steatosis was evaluated by triglyceride content and Oil Red O staining of the liver sections. LGG-s pretreatment restored alcohol-induced reduction in ileum mRNA levels of claudin-1, intestine trefoil factor (ITF), P-glycoprotein (P-gp), and cathelin-related antimicrobial peptide (CRAMP), which play important roles on intestinal barrier integrity. As a result, LGG-s pretreatment significantly inhibited the alcohol-induced intestinal permeability, endotoxemia and subsequently liver injury. Interestingly, LGG-s pretreatment increased ileum mRNA expression of hypoxia-inducible factor (HIF)-2α, an important transcription factor of ITF, P-gp, and CRAMP. These results suggest that LGG-s ameliorates the acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol-induced increased intestinal permeability and endotoxemia. The use of bacteria-free LGG culture supernatant provides a novel strategy for prevention of acute alcohol-induced liver injury.
    AJP Gastrointestinal and Liver Physiology 04/2012; 303(1):G32-41. DOI:10.1152/ajpgi.00024.2012 · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metallothionein (MT) protects against heavy metal-induced cellular damage and may participate in other fundamental physiological and pathological processes, such as antioxidation, proliferation, and cell survival. Previously, we have shown that elevation of MT by transgene or by induction with zinc protects the heart against diabetic cardiomyopathy by mechanisms such as antidiabetes-induced oxidative stress and inactivation of glycogen synthase kinase-3, which mediates glucose metabolism. We also reported that MT overexpression rescued the diabetic-induced reduction of hypoxia-inducible factor (HIF)-1α, which plays an important role in glucose utilization and angiogenesis. Here, we showed that overexpression of MT increased hexokinase (HK)-II expression under control conditions and attenuated diabetes-decreased HK-II expression. Glycolytic flux assay demonstrated that MT increased glycolysis output in high glucose-containing media-cultured H9c2 cells. The diabetes-induced reduction in cardiac capillaries was also attenuated by MT overexpression. Furthermore, MT induction significantly increased HIF-1 expression under both control and diabetic conditions. Moreover, in the present study, we demonstrated that MT-enhanced HIF-1α activity is likely through a mechanism of protein nuclear translocation. These results suggest that MT induces HIF-1α expression, leading to increased HK-II in the diabetic heart.
    AJP Heart and Circulatory Physiology 04/2012; 302(12):H2528-35. DOI:10.1152/ajpheart.00850.2011 · 4.01 Impact Factor

Publication Stats

814 Citations
224.64 Total Impact Points

Institutions

  • 2002–2015
    • University of Louisville
      • • Department of Medicine
      • • Department of Pediatrics
      • • Department of Pharmacology and Toxicology
      Louisville, Kentucky, United States
  • 2014
    • Wenzhou University
      Yung-chia, Zhejiang Sheng, China
  • 2011–2013
    • Jilin Agricultural University
      Yung-chia, Zhejiang Sheng, China
  • 2007–2013
    • Wenzhou Medical College
      • School of Pharmaceutical Science
      Yung-chia, Zhejiang Sheng, China