Christian L Brand

Novo Nordisk, København, Capital Region, Denmark

Are you Christian L Brand?

Claim your profile

Publications (29)136.8 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous insulin secretion exposes the liver to three times higher insulin concentrations than the rest of the body. Since subcutaneous insulin delivery eliminates this gradient and is associated with metabolic abnormalities, functionally restoring the physiologic gradient may provide therapeutic benefits. The effects of recombinant human insulin (HI) delivered intraportally (Po) or peripherally (Pe) were compared with an acylated insulin model compound (insulin-327) in dogs. During somatostatin and basal portal vein glucagon infusion, insulin was infused portally (PoHI; 1.8 pmol/kg/min; n=7) or peripherally (PeHI; 1.8 pmol/kg/min; n=8) and insulin-327 (Pe327;7.2 pmol/kg/min; n=5) was infused peripherally. Euglycemia was maintained by glucose infusion. While the effects on liver glucose metabolism were greatest in the PoHI and Pe327 groups, non-hepatic glucose uptake increased most in the PeHI group. Suppression of lipolysis was greater in PeHI than PoHI and was delayed in Pe327. Thus, small increments in portal vein insulin have major consequences on the liver, with little effect on non-hepatic glucose metabolism, whereas peripherally delivered insulin cannot act on the liver without also affecting non-hepatic tissues. Peripherally infused insulin-327 functionally restored the physiologic portal-arterial gradient and thereby produced hepato-preferential effects.
    Diabetes 06/2014; · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To compare the properties of insulin detemir with human insulin or insulin aspart in various in vitro and in vivo experiments, thereby highlighting the importance of performing dose-response studies when investigating insulin analogues, in this study specifically insulin detemir. Displacement of membrane-associated insulin receptors from human and rat hepatocytes, and from Chinese Hamster Ovary cells over-expressing human insulin receptor (CHO-hIR) at varying albumin concentrations is measured. Lipogenesis in primary rat adipocytes over time and the effects in the simultaneous presence of insulin detemir and human insulin or insulin aspart are assessed. The hyperinsulinaemic euglycaemic clamp technique in rats is used to establish dose-response curves for multiple metabolic endpoints and to investigate the effects of the simultaneous presence of insulin detemir and human insulin. Both in vitro and in vivo, insulin detemir shows full efficacy and right-shifted parallel dose-response curves compared with human insulin. The potency estimates are different between the in vivo and in vitro conditions and among different in vitro conditions, that is the potency decreases in vitro with increasing albumin concentration. The effects of insulin detemir and human insulin are additive both in vitro and in vivo. Insulin detemir is fully efficacious compared with human insulin on all metabolic endpoints measured in vitro and in vivo. The fact that the potency estimates are method-dependent emphasizes the importance of establishing full dose-response relationships when characterizing insulin detemir.
    Diabetes Obesity and Metabolism 08/2010; 12(8):665-73. · 5.18 Impact Factor
  • ChemInform 01/2010; 31(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Combination therapies are increasingly common in the clinical management of type 2 diabetes. We investigated to what extent combined treatment with the human glucagon-like peptide-1 (GLP-1) analogue liraglutide and the dual PPARalpha/gamma agonist ragaglitazar would improve glycaemic control in overtly diabetic Zucker diabetic fatty (ZDF) rats. Ninety overtly diabetic male ZDF rats were stratified into groups with matched haemoglobin A1c (HbA1c) (9.0+/-0.1%). Liraglutide (15 and 50 microg/kg subcutaneously twice daily), ragaglitazar (1 and 3 mg/kg perorally once daily) and their vehicles were studied as monotherapy and in combination in a 3x3 factorial design. After 4-week treatment, synergistic effects on HbA1c, non-fasting morning blood glucose (BG) and/or 24-h BG profiles were observed with three of the four combinations. The relationship between plasma insulin and BG in combination-treated animals approached that of historical lean ZDF rats representing normal glucose homeostasis, suggesting that insulin secretion and insulin sensitivity were markedly improved. Increased insulin immunostaining in islets further supports the improved beta-cell function and/or insulin sensitivity in combination-treated animals. The synergistic effect on glycaemic control was found without a similar synergistic increase in beta-cell mass in the combination groups. Our data demonstrate that combination treatment with a human GLP-1 analogue and a dual PPARalpha/gamma agonist through distinct mechanism of actions synergistically improves glycaemic control in the ZDF rat.
    Diabetes Obesity and Metabolism 07/2009; 11(8):795-803. · 5.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the work presented here was to design and synthesize potent human glucagon receptor antagonists with improved pharmacokinetic (PK) properties for development of pharmaceuticals for the treatment of type 2 diabetes. We describe the preparation of compounds with cyclic cores (5-aminothiazoles), their binding affinities for the human glucagon and GIP receptors, as well as affinities for rat, mouse, pig, dog, and monkey glucagon receptors. Generally, the compounds had slightly less glucagon receptor affinity compared to compounds of the previous series, but this was compensated for by much improved PK profiles in both rats and dogs with high oral bioavailabilities and sustained high plasma exposures. The compounds generally showed species selectivity for glucagon receptor binding with poor affinities for the rat, mouse, rabbit, and pig receptors. However, dog and monkey glucagon receptor affinities seem to reflect the human situation. One compound of this series, 18, was tested intravenously in an anesthetized glucagon-challenged monkey model of hyperglucagonaemia and hyperglycaemia and was shown dose-dependently to decrease glycaemia. Further, high plasma exposures and a long plasma half-life (5.2 h) were obtained.
    Journal of Medicinal Chemistry 05/2009; 52(9):2989-3000. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this publication we describe a peptide insulin receptor antagonist, S661, which is a single chain peptide of 43 amino acids. The affinity of S661 for the insulin receptor is comparable to that of insulin and the selectivity for the insulin receptor versus the IGF-1 receptor is higher than that of insulin itself. S661 is also an antagonist of the insulin receptor of other species such as pig and rat, and it also has considerable affinity for hybrid insulin/IGF-1 receptors. S661 completely inhibits insulin action, both in cellular assays and in vivo in rats. A biosynthetic version called S961 which is identical to S661 except for being a C-terminal acid seems to have properties indistinguishable from those of S661. These antagonists provide a useful research tool for unraveling biochemical mechanisms involving the insulin receptor and could form the basis for treatment of hypoglycemic conditions.
    Biochemical and Biophysical Research Communications 10/2008; 376(2):380-3. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optimization of a new series of small molecule human glucagon receptor (hGluR) antagonists is described. In the process of optimizing glucagon receptor antagonists, we counter-screened against the closely related human gastric inhibitory polypeptide receptor (hGIPR), and through structure activity analysis, we obtained compounds with low nanomolar affinities toward the hGluR, which were selective against the hGIPR and the human glucagon-like peptide-1 receptor (hGLP-1R). In the best cases, we obtained a >50 fold selectivity for the hGluR over the hGIPR and a >1000 fold selectivity over the hGLP-1R. A potent and selective glucagon receptor antagonist was demonstrated to inhibit glucagon-induced glycogenolysis in primary rat hepatocytes as well as to lower glucagon-induced hyperglycemia in Sprague-Dawley rats. Furthermore, the compound was shown to lower blood glucose in the ob/ob mouse after oral dosing.
    Journal of Medicinal Chemistry 09/2008; 51(17):5387-96. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Severe insulin resistance and impaired pancreatic beta-cell function are pathophysiological contributors to type 2 diabetes, and ideally, antihyperglycaemic strategies should address both. Therapeutic benefits of combining the long-acting human glucagon-like peptide-1 (GLP-1) analog, liraglutide (0.4 mg/kg/day), with insulin sensitizer, pioglitazone (10 mg/kg/day), were assessed in severely diabetic Zucker diabetic fatty rats for 42 days. Impact on glycaemic control was assessed by glycated haemoglobin (HbA(1C)) at day 28 and by oral glucose tolerance test at day 42. Liraglutide and pioglitazone synergistically improved glycaemic control as reflected by a marked decrease in HbA(1C) (liraglutide + pioglitazone: 4.8 +/- 0.3%; liraglutide: 8.8 +/- 0.6%; pioglitazone: 7.9 +/- 0.4%; vehicle: 9.7 +/- 0.3%) and improved oral glucose tolerance at day 42 (area under the curve; liraglutide + pioglitazone: 4244 +/- 445 mmol/l x min; liraglutide: 7164 +/- 187 mmol/l x min; pioglitazone: 7430 +/- 446 mmol/l x min; vehicle: 8093 +/- 139 mmol/l x min). A 24-h plasma glucose profile at day 38 was significantly decreased only in the liraglutide + pioglitazone group. In addition, 24-h insulin profile was significantly elevated only in the liraglutide + pioglitazone group. Liraglutide significantly decreased food intake alone and in combination with pioglitazone, while pioglitazone alone increased cumulated food intake. As a result, rats on liraglutide alone gained significantly less weight than vehicle-treated rats, whereas rats on pioglitazone alone gained significantly more body weight than vehicle-treated rats. However, combination therapy with liraglutide and pioglitazone caused the largest weight gain, probably reflecting marked improvement of energy balance because of reduction of glucosuria. Combination therapy with insulinotropic GLP-1 agonist liraglutide and insulin sensitizer, pioglitazone, improves glycaemic control above and beyond what would be expected from additive effects of the two antidiabetic agents.
    Diabetes Obesity and Metabolism 05/2008; 10(4):301-11. · 5.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased glucagon secretion predicts deterioration of glucose tolerance, and high glucagon levels contribute to hyperglycaemia in type 2 diabetes. Inhibition of glucagon action may therefore be a potential novel target to reduce hyperglycaemia. Here, we investigated whether chronic treatment with a glucagon receptor antagonist (GRA) improves islet dysfunction in female mice on a high-fat diet (HFD). After 8 weeks of HFD, mice were treated with a small molecule GRA (300 mg/kg, gavage once daily) for up to 30 days. Insulin secretion was studied after oral and intravenous administration of glucose and glucagon secretion after intravenous arginine. Islet morphology was examined and insulin secretion and glucose oxidation were measured in isolated islets. Fasting plasma glucose levels were reduced by GRA (6.0 +/- 0.2 vs 7.4 +/- 0.5 mmol/l; p = 0.017). The acute insulin response to intravenous glucose was augmented (1,300 +/- 110 vs 790 +/- 64 pmol/l; p < 0.001). The early insulin response to oral glucose was reduced in mice on HFD + GRA (1,890 +/- 160 vs 3,040 +/- 420 pmol/l; p = 0.012), but glucose excursions were improved. Intravenous arginine significantly increased the acute glucagon response (129 +/- 12 vs 36 +/- 6 ng/l in controls; p < 0.01), notably without affecting plasma glucose. GRA caused a modest increase in alpha cell mass, while beta cell mass was similar to that in mice on HFD + vehicle. Isolated islets displayed improved glucose-stimulated insulin secretion after GRA treatment (0.061 +/- 0.007 vs 0.030 +/- 0.004 pmol islet(-1) h(-1) at 16.7 mmol/l glucose; p < 0.001), without affecting islet glucose oxidation. Chronic glucagon receptor antagonism in HFD-fed mice improves islet sensitivity to glucose and increases insulin secretion, suggesting improvement of key defects underlying impaired glucose tolerance and type 2 diabetes.
    Diabetologia 08/2007; 50(7):1453-62. · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elevated glucagon is associated with fasting hyperglycemia in type 2 diabetes. We assessed the effects of the glucagon receptor antagonist (2R)-N-[4-({4-(1-cyclohexen-1-yl)[(3,5-dichloroanilino)carbonyl]anilino}methyl)benzoyl]-2-hydroxy-b-alanine (NNC 25-0926) on hepatic glucose production (HPG) in vivo, using arteriovenous difference and tracer techniques in conscious dogs. The experiments consisted of equilibration (-140 to -40 min), control (40-0 min), and experimental [0-180 min, divided into P1 (0-60 min) and P2 (60-180 min)] periods. In P1, NNC 25-0926 was given intragastrically at 0 (veh), 10, 20, 40, or 100 mg/kg, and euglycemia was maintained. In P2, somatostatin, basal intraportal insulin, and 5-fold basal intraportal glucagon (2.5 ng/kg/min) were infused. Arterial plasma insulin levels remained basal throughout the study in all groups. Arterial plasma glucagon levels remained basal during the control period and P1 and then increased to approximately 70 pg/ml in P2 in all groups. Arterial plasma glucose levels were basal in the control period and P1 in all groups. In P2, the arterial glucose level increased to 245+/-22 and 172+/-15 mg/dl in the veh and 10 mg/kg groups, respectively, whereas in the 20, 40, and 100 mg/kg groups, there was no rise in glucose. Net hepatic glucose output was approximately 2 mg/kg/min in all groups during the control period. In P2, it increased by 9.4+/-2 mg/kg/min in the veh group. In the 10, 20, 40, and 100 mg/kg groups, the rise was only 4.1+/-0.9, 1.6+/-0.6, 2.4+/-0.7, and 1.5+/-0.3 mg/kg/min, respectively, due to inhibition of glycogenolysis. In conclusion, NNC 25-0926 effectively blocked the ability of glucagon to increase HGP in the dog.
    Journal of Pharmacology and Experimental Therapeutics 06/2007; 321(2):743-52. · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The system that regulates insulin secretion from beta-cells in the islet of Langerhans has a capsaicin-sensitive inhibitory component. As calcitonin gene-related peptide (CGRP)-expressing primary sensory fibers innervate the islets, and a major proportion of the CGRP-containing primary sensory neurons is sensitive to capsaicin, the islet-innervating sensory fibers may represent the capsaicin-sensitive inhibitory component. Here, we examined the expression of the capsaicin receptor, vanilloid type 1 transient receptor potential receptor (TRPV1) in CGRP-expressing fibers in the pancreatic islets, and the effect of selective elimination of capsaicin-sensitive primary afferents on the decline of glucose homeostasis and insulin secretion in Zucker diabetic fatty (ZDF) rats, which are used to study various aspects of human type 2 diabetes mellitus. We found that CGRP-expressing fibers in the pancreatic islets also express TRPV1. Furthermore, we also found that systemic capsaicin application before the development of hyperglycemia prevents the increase of fasting, non-fasting, and mean 24-h plasma glucose levels, and the deterioration of glucose tolerance assessed on the fifth week following the injection. These effects were accompanied by enhanced insulin secretion and a virtually complete loss of CGRP- and TRPV1-coexpressing islet-innervating fibers. These data indicate that CGRP-containing fibers in the islets are capsaicin sensitive, and that elimination of these fibers contributes to the prevention of the deterioration of glucose homeostasis through increased insulin secretion in ZDF rats. Based on these data we propose that the activity of islet-innervating capsaicin-sensitive fibers may have a role in the development of reduced insulin secretion in human type 2 diabetes mellitus.
    European Journal of Neuroscience 02/2007; 25(1):213-23. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A weak human glucagon receptor antagonist with an IC50 of 7 microM was initially found by screening of libraries originally targeted to mimic the binding of the glucagon-like peptide (GLP-1) hormone to its receptor. Optimization of this hit for binding affinity for the glucagon receptor led to ligands with affinity in the nanomolar range. In addition to receptor binding, optimization efforts were made to stabilize the molecules against fast metabolic turnover. A potent antagonist of the human human glucagon receptor was obtained that had 17% oral availability in rats with a plasma half-life of 90 min. The major metabolites of this lead were identified and used to further optimize this series with respect to pharmacokinetic properties. This final optimization led to a potent glucagon antagonist that was orally available in rats and dogs and was efficacious in lowering blood glucose levels in a diabetic animal model.
    Journal of Medicinal Chemistry 02/2007; 50(1):113-28. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies, glucagon receptor knockout mice (Gcgr(-/-)) display reduced blood glucose and increased glucose tolerance, with hyperglucagonemia and increased levels of glucagon-like peptide (GLP)-1. However, the role of glucagon receptor signaling for the regulation of islet function and insulin sensitivity is unknown. We therefore explored beta-cell function and insulin sensitivity in Gcgr(-/-) and wild-type mice. The steady-state glucose infusion rate during hyperinsulinemic-euglycemic clamp was elevated in Gcgr(-/-) mice, indicating enhanced insulin sensitivity. Furthermore, the acute insulin response (AIR) to intravenous glucose was higher in Gcgr(-/-) mice. The augmented AIR to glucose was blunted by the GLP-1 receptor antagonist, exendin-3. In contrast, AIR to intravenous administration of other secretagogues was either not affected (carbachol) or significantly reduced (arginine, cholecystokinin octapeptide) in Gcgr(-/-) mice. In islets isolated from Gcgr(-/-) mice, the insulin responses to glucose and several insulin secretagogues were all significantly blunted compared with wild-type mice. Furthermore, glucose oxidation was reduced in islets from Gcgr(-/-) mice. In conclusion, the present study shows that glucagon signaling is required for normal beta-cell function and that insulin action is improved when disrupting the signal. In vivo, augmented GLP-1 levels compensate for the impaired beta-cell function in Gcgr(-/-) mice.
    Diabetes 01/2007; 55(12):3463-9. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In type 2 diabetes, glucagon levels are elevated in relation to the prevailing insulin and glucose levels. The relative hyperglucagonemia is linked to increased hepatic glucose output (HGO) and hyperglycemia. Antagonizing the effects of glucagon is therefore considered an attractive target for treatment of type 2 diabetes. In the current study, effects of eliminating glucagon signaling with a glucagon monoclonal antibody (mAb) were investigated in the diabetic ob/ob mouse. Acute effects of inhibiting glucagon action were studied by an oral glucose tolerance test (OGTT) and by measurement of HGO. In addition, the effects of subchronic (5 and 14 days) glucagon mAb treatment on plasma glucose, insulin, triglycerides, and HbA1c (A1C) levels were investigated. Glucagon mAb treatment reduced the area under the curve for glucose after an OGTT, reduced HGO, and increased the rate of hepatic glycogen synthesis. Glucagon mAb treatment for 5 days lowered plasma glucose and triglyceride levels, whereas 14 days of glucagon mAb treatment reduced A1C. In conclusion, acute and subchronic neutralization of endogenous glucagon improves glycemic control, thus supporting the contention that glucagon antagonism may represent a beneficial treatment of diabetes.
    Diabetes 11/2006; 55(10):2843-8. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has earlier been demonstrated that capsaicin-induced desensitization improves insulin sensitivity in normal rats. However, whether increased capsaicin-sensitive nerve activity precedes the onset of insulin resistance in diet-induced obesity--and therefore might be involved in the pathophysiology--is not known. Further, it is of relevance to investigate whether capsaicin desensitization improves glycaemic control even in obese individuals and we therefore chose the obese Zucker rats to test this. Plasma levels of calcitonin gene-related peptide (CGRP; a marker of sensory nerve activity) was assessed in 8-week-old Zucker rats. To investigate whether capsaicin desensitization (100 mg/kg at 9 weeks of age) would also ameliorate glycaemia in this non-diabetic model, we assessed oral glucose tolerance at 7 weeks after capsaicin. It was found that plasma CGRP levels were elevated in obese Zucker rats prior to the onset of obesity (16.1+/-3.4 pmol/l in pre-obese Zucker rats vs 6.9+/-1.1 pmol/l in lean littermates; P = 0.015) despite similar body weights. Furthermore, capsaicin desensitization reduced both fasting blood glucose (4.3+/-0.2 mmol/l vs 5.1+/-0.2 mmol/l in controls; P = 0.050) as well as the mean blood glucose level during an oral glucose tolerance test (OGTT) (6.8+/-0.3 mmol/l vs 8.6+/-0.5 mmol/l in control obese rats; P = 0.024) whereas the plasma insulin levels during the OGTT were unchanged. However this did not lead to an improvement in insulin resistance or to a reduction of tissue triglyceride accumulation in muscle or liver. We concluded that capsaicin-induced sensory nerve desensitization improves glucose tolerance in Zucker rats. Since, in this study, plasma CGRP levels, a marker of sensory nerve activity, were increased in the pre-obese rats, our data support the hypothesis that increased activity of sensory nerves precedes the development of obesity and insulin resistance in Zucker rats.
    European Journal of Endocrinology 01/2006; 153(6):963-9. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.
    AJP Endocrinology and Metabolism 07/2005; 288(6):E1137-45. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lifestyle interventions including exercise programs are cornerstones in the prevention of obesity-related diabetes. The AMP-activated protein kinase (AMPK) has been proposed to be responsible for many of the beneficial effects of exercise on glucose and lipid metabolism. The effects of long-term exercise training or 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside (AICAR) treatment, both known AMPK activators, on the development of diabetes in male Zucker diabetic fatty (ZDF) rats were examined. Five-week-old, pre-diabetic ZDF rats underwent daily treadmill running or AICAR treatment over an 8-week period and were compared with an untreated group. In contrast to the untreated, both the exercised and AICAR-treated rats did not develop hyperglycemia during the intervention period. Whole-body insulin sensitivity, as assessed by a hyperinsulinemic-euglycemic clamp at the end of the intervention period, was markedly increased in the exercised and AICAR-treated animals compared with the untreated ZDF rats (P < 0.01). In addition, pancreatic beta-cell morphology was almost normal in the exercised and AICAR-treated animals, indicating that chronic AMPK activation in vivo might preserve beta-cell function. Our results suggest that activation of AMPK may represent a therapeutic approach to improve insulin action and prevent a decrease in beta-cell function associated with type 2 diabetes.
    Diabetes 04/2005; 54(4):928-34. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 6- and 10-week-old obesity-prone (fa/fa) Zucker diabetic fatty (ZDF) rats, effects of prevention and intervention therapies, respectively, were compared between PPARalpha/gamma agonist, ragaglitazar (RAGA) and separate PPARgamma and alpha agonists, pioglitazone (PIO) and bezafibrate (BF). In a separate study, lean (+/+) ZDF rats fed highly palatable chow to induce dietary obesity and insulin resistance were treated similarly. To test insulin-secretory capacity, all animals underwent a hyperglycaemic clamp. Insulin sensitivity was improved equally by RAGA and PIO in fa/fa rats subjected to both prevention and intervention treatments (e.g., prevention HOMA-IR: -71 and -72%, respectively), as was hyperglycaemia (both -68%). BF had no effect on either parameter in any study. Plasma lipids were markedly reduced (by 48-77%) by RAGA in all studies, equivalent to PIO, but to a greater extent than BF. RAGA improved beta-cell function (HOMA-beta) more than three-fold with prevention and intervention therapies, whereas PIO showed improvement only in intervention therapy. Consistent with improved insulin sensitivity, glucose infusion rate during the clamp was 60% higher in RAGA-treated animals subjected to prevention therapy, but there was little additional insulin-secretory response, suggesting that insulin secretion was already maximal.Thus, RAGA and PIO equally improve metabolic profile in ZDF rats, particularly when administered early in the course of diabetes. They also improve beta-cell function, although this is better demonstrated through indices incorporating fasting insulin and glucose concentrations than through the hyperglycaemic clamp technique in this model.
    British Journal of Pharmacology 03/2005; 144(3):308-16. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensory nerve desensitization by capsaicin has been shown to improve the diabetic condition in Zucker Diabetic Fatty rats. However, administration of capsaicin to adult rats is associated with an increased mortality. Therefore, in this experiment, we examined the influence of resiniferatoxin, a tolerable analogue of capsaicin suitable for in vivo use, on the diabetic condition of Zucker Diabetic Fatty rats. A single subcutaneous injection of resiniferatoxin (0.01 mg/kg) to these rats was tolerable, with no mortality. When administered to early diabetic rats at 15 weeks of age, the further deterioration of glucose homeostasis was prevented by resiniferatoxin. Further, when administered to overtly diabetic rats at 19 weeks of age, resiniferatoxin markedly improved glucose tolerance at two weeks after administration and this was accompanied by an increased insulin response to oral glucose as well as a reduction in the plasma levels of dipeptidyl peptidase IV. Therefore, resiniferatoxin is a safe alternative to capsaicin for further investigations of the role of the sensory nerves in experimental diabetes.
    European Journal of Pharmacology 03/2005; 509(2-3):211-7. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucagon-like peptide 1 (GLP-1), a gut incretin hormone that stimulates insulin secretion, also activates antiapoptotic signaling pathways such as phosphoinositide 3-kinase and mitogen-activated protein kinase in pancreatic and insulinoma cells. Since these kinases have been shown to protect against myocardial injury, we hypothesized that GLP-1 could directly protect the heart against such injury via these prosurvival signaling pathways. Both isolated perfused rat heart and whole animal models of ischemia/reperfusion were used, with infarct size measured as the end point of injury. In both studies, GLP-1 added before ischemia demonstrated a significant reduction in infarction compared with the valine pyrrolidide (an inhibitor of its breakdown) or saline groups. This protection was abolished in the in vitro hearts by the GLP-1 receptor antagonist exendin (9-39), the cAMP inhibitor Rp-cAMP, the PI3kinase inhibitor LY294002, and the p42/44 mitogen-activated protein kinase inhibitor UO126. Western blot analysis demonstrated the phosphorylation of the proapoptotic peptide BAD in the GLP-1-treated groups. We show for the first time that GLP-1 protects against myocardial infarction in the isolated and intact rat heart. This protection appears to involve activating multiple prosurvival kinases. This finding may represent a new therapeutic potential for this class of drug currently undergoing clinical trials in the treatment of type 2 diabetes.
    Diabetes 02/2005; 54(1):146-51. · 7.90 Impact Factor