Changqing Yu

Third Military Medical University, Ch’ung-ch’ing-shih, Chongqing Shi, China

Are you Changqing Yu?

Claim your profile

Publications (11)43.55 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular smooth muscle cells (VSMCs) proliferation and migration, which are central in the development of vascular diseases, are regulated by numerous hormones and humoral factors. Activation of the insulin receptor stimulates VSMCs proliferation while dopamine receptors, via D1 and D3 receptors, inhibit the stimulatory effects of norepinephrine on VSMCs proliferation. We hypothesize that activation of the D4 dopamine receptor may also inhibit the proliferation and migration of VSMCs, therefore, inhibit atherosclerosis. Our current study found that insulin increased the proliferation and migration of A10 cells, an effect that was reduced in the presence of a D4 receptor agonist, PD168077. The negative effect of the D4 receptor on insulin's action may be via decreasing insulin receptor expression, because activation of the D4 receptor inhibited insulin receptor protein and mRNA expressions, indicating that the regulation occured at the transcriptional or post-transcriptional levels. To determine whether or not the inhibition of D4 receptor on insulin-mediated proliferation and migration of VSMCs has physiological significance, hyper-insulinemic Sprague-Dawley rats with balloon-injured carotid artery were treated with a D4 agonist, PD168077, (6 mg/kg/d) for 14 days. We found that PD168077 significantly inhibited neointimal formation by inhibition of VSMC proliferation. This study suggests that activation of the D4 receptor suppresses the proliferation and migration of VSMCs, therefore, inhibit atherosclerosis. The D4 receptor may be a potential therapeutic target to reduce the effects of insulin on artery remodeling.
    Cardiovascular Diabetology 06/2014; 13(1):97. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To explore the relationship between CYP4F2 gene polymorphism and coronary heart disease (CHD) in a Chinese Han population.
    Lipids in Health and Disease 05/2014; 13(1):83. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the development and progression of diabetes-related vascular complications. (-)-Epigallocatechin gallate (EGCG), the major catechin derived from green tea, is able to exert antidiabetes effects in animal models. However, it is not known whether or not EGCG inhibits VSMC proliferation induced by high glucose. This study tested the hypothesis that EGCG might have an inhibitory effect on VSMC proliferation induced by high glucose. VSMC proliferation was determined by [(3)H]-thymidine incorporation and uptake of 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT). Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was determined by immunoblotting, and ERK 1/2 activity was detected by measuring the ability to phosphorylate its substrate Elk-1. Glucose increased VSMC proliferation in a concentration-dependent manner, which was reduced in the presence of EGCG. VSMC proliferation mediated by high glucose (30 mM) was involved in protein kinase C (PKC) and ERK1/2 signalings, because its effect was blocked by PKC inhibitor (PKC inhibitor 19-31) and ERK1/2 inhibitor (PD98059). Pretreatment of VSMCs with EGCG significantly inhibited the stimulatory effect of high glucose on PKC and ERK1/2 activation, followed by attenuation of its downstream transcription factor Elk-1 phosphorylation. Taken together, these results suggest that EGCG could suppress VSMC proliferation induced by high glucose by inhibition of PKC and ERK1/2 signalings in VSMCs, which indicates that EGCG might be a possible medicine to reduce vascular complications in diabetes.
    Journal of Agricultural and Food Chemistry 11/2011; 59(21):11483-90. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular smooth muscle cell (VSMC) proliferation is regulated by numerous hormones and humoral factors. Our previous study found that stimulation of D(1)-like dopamine receptors inhibited insulin receptor expression and function in VSMCs. We hypothesize that there is also an interaction between D(3) dopamine and insulin receptors, i.e., stimulation of the D(3) receptor inhibits insulin receptor expression and function. Receptor expression was determined by immunoblotting, immunohistochemisty, and reverse transcriptase-PCR; VSMC proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-diphenyl-tetrazolium bromide (MTT) assay and cell number. Insulin receptor protein is increased in the aorta of D(3) receptor deficient mice. Stimulation of the D(3) receptor inhibited insulin receptor mRNA and protein expression and insulin-mediated VSMC proliferation, and increased protein kinase A (PKA) activity, insulin receptor phosphorylation, and degradation in immortalized aortic VSMCs (A10 cells). These effects were blocked by a PKA inhibitor, indicating that the D(3) receptor-mediated decrease in insulin receptor expression was related to a decrease in transcription/post-transcription and increased degradation, involving PKA signaling. D(3) receptor stimulation may be a target to reduce the adverse effect of insulin in hypertension by inhibition of insulin receptor expression and function in arterial VSMCs.
    American Journal of Hypertension 03/2011; 24(6):654-60. · 3.67 Impact Factor
  • International Journal of Cardiology 10/2009; 137. · 6.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ion transport in the renal proximal tubule (RPT) is regulated by numerous hormones and humoral factors, including insulin and dopamine. Previous studies show an interaction between insulin and the D(1) receptor. Because both D(1) and D(5) receptors belong to the D(1)-like receptor subfamily, it is possible that an interaction between insulin and the D(5) dopamine receptor exists in RPT cells from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). D(5) receptor expression in immortalized RPT cells from WKY and SHRs was quantified by immunoblotting and D(5) receptor function by measuring Na(+)-K(+) ATPase activity. Insulin increased the expression of the D(5) receptor. Stimulation with insulin (10(-7) mol/l) for 24 h increased D(5) receptor expression in RPT cells from WKY rats. This effect of insulin on D(5) receptor expression was aberrant in RPT cells from SHRs. The stimulatory effect of insulin on D(5) receptor expression in RPT cells from WKY rats was inhibited by a protein kinase C (PKC) inhibitor (PKC inhibitor peptide 19-31, 10(-6) mol/l) or a phosphatidylinositol 3 (PI3) kinase inhibitor (wortmannin, 10(-6) mol/l), indicating that both PKC and PI3 kinase were involved in the signaling pathway. Stimulation of the D(5) receptor heterologously expressed in HEK293 cells with fenoldopam (10(-7) mol/l/15 min) inhibited Na(+)-K(+) ATPase activity, whereas pretreatment with insulin (10(-7) mol/l/24 h) increased the D(5) receptor-mediated inhibition. Insulin and D(5) receptors interact to regulate renal sodium transport; an aberrant interaction between insulin and D(5) receptor may participate in the pathogenesis of hypertension.
    American Journal of Hypertension 05/2009; 22(7):770-6. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dopaminergic and endothelin systems, by regulating sodium transport in the renal proximal tubule (RPT), participate in the control of blood pressure. The D(3) and ETB receptors are expressed in RPTs, and D(3) receptor function in RPTs is impaired in spontaneously hypertensive rats (SHRs). Therefore, we tested the hypothesis that D(3) receptors can regulate ETB receptors, and that D(3) receptor regulation of ETB receptors in RPTs is impaired in SHRs. ETB receptor expression in RPT cells was measured by immunoblotting and reverse transcriptase-PCR and ETB receptor function by measuring Na(+)-K(+) ATPase activity. D(3)/ETB receptor interaction was studied by co-immunoprecipitation. In Wistar-Kyoto (WKY) RPT cells, the D(3) receptor agonist, PD128907, increased ETB receptor protein expression, effects that were blocked by removal of calcium in the culture medium. The stimulatory effect of D(3) on ETB receptor mRNA and protein expression was also blocked by nicardipine. In contrast, in SHR RPT cells, PD128907 decreased ETB receptor expression. Basal D(3)/ETB receptor co-immunoprecipitation was three times greater in WKY than in SHRs. The absolute amount of D(3)/ETB receptor co-immunoprecipitation induced by a D(3) receptor agonist was also greater in WKY than in SHRs. Stimulation of ETB receptors decreased Na(+)-K(+) ATPase activity in WKY but not in SHR cells. Pretreatment with PD128907 augmented the inhibitory effect of BQ3020 on Na(+)-K(+) ATPase activity in WKY but not in SHR cells. D(3) receptors regulate ETB receptors by physical receptor interaction and govern receptor expression and function. D(3) receptor regulation of ETB receptors is aberrant in RPT cells from SHRs.
    American Journal of Hypertension 05/2009; 22(8):877-83. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular smooth muscle cell (VSMC) proliferation is central to the development of vascular diseases, including hypertension, which is regulated by numerous hormones and humoral factors. Our previous study showed that the stimulatory effect of norepinephrine on VSMC proliferation is inhibited by D1-like receptors and the D3 dopamine receptor, a member of the D2-like receptor family. Insulin is a proliferative hormone but it is not known if there is any interaction between insulin and D1-like receptors. We hypothesized that Dl-like receptors may have an inhibitory effect on the insulin-induced VSMC proliferation; aberrant insulin and Dl-like receptor functions could be involved in the pathogenesis of essential hypertension. VSMC proliferation was determined by [H]-thymidine incorporation; insulin receptor mRNA and protein expressions were determined by RT-PCR, immunoblotting, and immunohistochemistry. Insulin increased VSMC proliferation in immortalized aortic A10 cells, determined by [H]-thymidine incorporation. Although the D1-like receptor, by itself, had no effect on VSMC proliferation, stimulation with fenoldopam, a D1-like receptor agonist, inhibited the stimulatory effect of insulin. The inhibitory effect of fenoldopam on insulin-mediated VSMC proliferation was receptor specific, because its effect could be blocked by SCH23390, a D1-like receptor antagonist. Fenoldopam also inhibited insulin receptor mRNA and protein expression, which was time dependent and concentration dependent. A PKC or MAP kinase inhibitor blocked the inhibitory effect of fenoldopam on insulin receptor expression, indicating that PKC and MAP kinase were involved in the signaling pathway. The inhibitory effect of D1-like receptors on insulin-mediated VSMC proliferation may play an important role in the regulation of blood pressure.
    Journal of Hypertension 04/2009; 27(5):1033-41. · 4.22 Impact Factor
  • International Journal of Cardiology - INT J CARDIOL. 01/2009; 137.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopaminergic and endothelin systems participate in the control blood pressure by regulating sodium transport in the renal proximal tubule. Disruption of either the endothelin B receptor (ETB) or D(3) dopamine receptor gene in mice produces hypertension. To examine whether these two receptors interact we studied the Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats by selectively infusing reagents into the right kidney of anesthetized rats. The D(3) receptor agonist (PD128907) caused natriuresis in WKY rats which was partially blocked by the ETB receptor antagonist. In contrast, PD128907 blunted sodium excretion in the SHRs. We found using laser confocal microscopy that the ETB receptor was mainly located in the cell membrane in control WKY cells. Treatment with the D(3) receptor antagonist caused its internalization into intracellular compartments that contained the D(3) receptors. Combined use of D(3) and ETB antagonists failed to internalize ETB receptors in cells from WKY rats. In contrast in SHR cells, ETB receptors were found mainly in internal compartments under basal condition and thus were likely prevented from interacting with the agonist-stimulated, membrane-bound D(3) receptors. Our studies suggest that D(3) receptors physically interact with proximal tubule ETB receptors and that the blunted natriuretic effect of dopamine in SHRs may be explained, in part, by abnormal D(3)/ETB receptor interactions.
    Kidney International 07/2008; 74(6):750-9. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sympathetic nervous system plays an important role in the regulation of blood pressure. There is increasing evidence for positive and negative interactions between dopamine and adrenergic receptors; the activation of the alpha-adrenergic receptor induces vasoconstriction, whereas the activation of dopamine receptor induces vasorelaxation. We hypothesize that the D1-like receptor and/or D3 receptor also inhibit alpha1-adrenergic receptor-mediated proliferation in vascular smooth muscle cells (VSMCs). In this study, VSMC proliferation was determined by measuring [3H]thymidine incorporation, cell number, and uptake of 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT). Norepinephrine increased VSMC number and MTT uptake, as well as [3H]thymidine incorporation via the alpha1-adrenergic receptor in aortic VSMCs from Sprague-Dawley rats. The proliferative effects of norepinephrine were attenuated by the activation of D1-like receptors or D3 receptors, although a D1-like receptor agonist, fenoldopam, and a D3 receptor agonist, PD-128907, by themselves, at low concentrations, had no effect on VSMC proliferation. Simultaneous stimulation of both D1-like and D3 receptors had an additive inhibitory effect. The inhibitory effect of D3 receptor was via protein kinase A, whereas the D1-like receptor effect was via protein kinase C-zeta. The interaction between alpha1-adrenergic and dopamine receptors, especially D1-like and D3 receptors in VSMCs, could be involved in the pathogenesis of hypertension.
    AJP Heart and Circulatory Physiology 07/2008; 294(6):H2761-8. · 4.01 Impact Factor