Petr Sova

Academy of Sciences of the Czech Republic, Praha, Hlavni mesto Praha, Czech Republic

Are you Petr Sova?

Claim your profile

Publications (20)72.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In search for novel strategies in colon cancer treatment, we investigated the unique ability of platinum(IV) complex LA-12 to efficiently enhance the killing effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), and compared it with the sensitizing action of cisplatin. We provide the first evidence that LA-12 primes human colon cancer cells for TRAIL-induced cytotoxicity by p53-independent activation of the mitochondrial apoptotic pathway. The cooperative action of LA-12 and TRAIL was associated with stimulation of Bax/Bak activation, drop of mitochondrial membrane potential, caspase-9 activation, and a shift of the balance among Bcl-2 family proteins in favor of the pro-apoptotic members. In contrast to cisplatin, LA-12 was a potent inducer of ERK-mediated Noxa and BimL protein upregulation, and more effectively enhanced TRAIL-induced apoptosis in the absence of Bax. The cooperative action of LA-12 and TRAIL was augmented following the siRNA-mediated silencing of Mcl-1 in both Bax proficient/deficient cells. We newly demonstrated that LA-12 induced ERK-mediated c-Myc upregulation, and proved that c-Myc silencing inhibited the mitochondrial activation and apoptosis in colon cancer cells treated with LA-12 and TRAIL. The LA-12-mediated sensitization to TRAIL-induced apoptosis was demonstrated in several colon cancer cell lines, further underscoring the general relevance of our findings. The selective action of LA-12 was documented by preferential priming of cancer but not normal colon cancer cells to TRAIL killing effects. Our work highlights the promising potential of LA-12 over cisplatin to enhance the colon cancer cell sensitivity to TRAIL-induced apoptosis, and provides new mechanistic insights into their cooperative action.
    Biochemical Pharmacology 10/2014; 92(3). DOI:10.1016/j.bcp.2014.09.013 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic potential of conventionally used platinum-based drugs in treatment of colorectal tumours has been limited due to high incidence of tumour resistance to them and to their severe side effects. This evokes a search for more suitable anti-cancer drugs. We have compared ability of oxaliplatin and a novel platinum(IV) complex, LA-12, to modulate the cell cycle and induce apoptosis in human colon adenocarcinoma HCT116 wt and p53/p21 null cells, and have investigated molecular mechanisms involved. Cell cycle-related changes were analysed by flow cytometry (bromodeoxyuridine/propidium iodide staining, histone H3 phosphorylation). Apoptosis was detected using flow cytometry (assays monitoring caspase activity) and fluorescence microscopy (nuclear morphology). Changes in levels of genes/proteins involved in cell cycle and apoptosis regulation were examined by RT-PCR and western blotting. Our results highlight the outstanding ability of LA-12 to induce effective elimination of colon cancer cells independently of p53/p21, and in significantly lower doses compared to oxaliplatin. While oxaliplatin induced p53- and p21-dependent G2 -phase arrest associated with downregulation of cyclin B1 and Cdk1, LA-12 allowed cells to enter M-phase of the cell cycle regardless of p53/p21 status. Higher malignant cell toxicity and ability to bypass cell cycle arrest important for the cell damage repair suggest LA-12 to be a more effective candidate for elimination of colon tumours from a variety of genetic backgrounds, compared with oxaliplatin.
    Cell Proliferation 09/2013; 46(6). DOI:10.1111/cpr.12061 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT: The initial pharmacokinetic study of a new anticancer agent (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs.
    Proteome Science 10/2011; 9(1):68. DOI:10.1186/1477-5956-9-68 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study compared the pharmacokinetics, tissue distribution, and urinary excretion of platinum in rats after single oral doses of LA-12 and satraplatin. Both platinum derivatives were administered to male Wistar rats as suspensions in methylcellulose at four equimolar doses within the range of 37.5-300 mg LA-12/kg body weight. Blood sampling was performed until 72 h, and plasma and plasma ultrafiltrate were separated. Moreover, urine was collected until 72 h, and kidney and liver tissue samples were obtained at several times after administration. Platinum was measured by atomic absorption spectrometry. The pharmacokinetics of platinum was analyzed by population modelling and post hoc Bayesian estimation as well as using non-compartmental pharmacokinetic analysis of the mean concentration-time curves. Platinum was detected in all plasma and ultrafiltrate samples 15 min after oral administration of both compounds and peaked between 3-4 h and 1-3 h, respectively. Similar for LA-12 and satraplatin, the C (max) and AUC values of plasma and ultrafiltrate platinum increased less than in proportion to dose. The mean C (max) and AUC values of plasma platinum observed after administration of LA-12 were from 0.84 to 2.5 mg/l and from 20.2 to 75.9 mg h/l. For ultrafiltrate platinum, the corresponding ranges were 0.16-0.78 mg/l and 0.63-1.8 mg h/l, respectively. The AUC of plasma platinum was higher after satraplatin (P < 0.001). However, administration of LA-12 resulted in significantly higher AUC values of ultrafiltrate platinum after the doses of 150 mg and 300 mg/kg (P < 0.01), respectively, and the C (max) values were significantly higher starting from the dose of 75 mg/kg LA-12 and upward (P < 0.01). Cumulative 72-h urinary recovery of platinum dose was below 5% for both compounds, and it decreased with the dose of satraplatin (P < 0.01), while a numerical decrease was observed after administration of LA-12 that did not reach statistical significance (P = 0.41). The renal clearance of free platinum was similar regardless of the dose and compound administered. Platinum concentrations in the liver homogenate exceeded those in the kidney. Distribution of platinum to tissues was higher after LA-12 compared to satraplatin. The difference in kidney platinum increased with dose and was twofold after 350 mg/kg LA-12. Liver platinum was twofold higher after LA-12 across all four doses. In conclusion, this first comparative pharmacokinetic study with LA-12 and satraplatin shows that characteristics of platinum exposure evaluated in the plasma, plasma ultrafiltrate and kidney and liver tissues increase less than in proportion to dose following a single-dose administration of 37.5-300 mg/kg to Wistar rats. These findings together with the dose-related elevation in the pharmacokinetic characteristics V/F and CL/F of platinum and ultrafiltrate platinum as well as a drop in platinum urinary recovery are consistent with a dose-related decrease in the extent of oral bioavailability most likely due to saturable intestinal absorption.
    Cancer Chemotherapy and Pharmacology 06/2011; 67(6):1247-56. DOI:10.1007/s00280-010-1411-0 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) can selectively trigger apoptosis in various cancer cell types. However, many cancer cells are resistant to death receptor-mediated apoptosis. Combination therapy with platinum complexes may affect TRAIL-induced signaling via modulation of various steps in apoptotic pathways. Here, we show that cisplatin or a more potent platinum(IV) complex LA-12 used in 20-fold lower concentration enhanced killing effects of TRAIL in human colon and prostate cancer cell lines via stimulation of caspase activity and overall apoptosis. Both platinum complexes increased DR5 surface expression in colon cancer cells. Small interfering RNA-mediated DR5 silencing rescued cells from sensitizing effects of platinum drugs on TRAIL-induced caspase-8 activation and apoptosis, showing the functional importance of DR5 in the effects observed. In addition, both cisplatin and LA-12 triggered the relocalization of DR4 and DR5 receptors to lipid rafts and accelerated internalization of TRAIL, which may also affect TRAIL signaling. Collectively, modulations of the initial steps of the extrinsic apoptotic pathway at the level of DR5 and plasma membrane are important for sensitization of colon and prostate cancer cells to TRAIL-induced apoptosis mediated by LA-12 and cisplatin.
    Carcinogenesis 10/2010; 32(1):42-51. DOI:10.1093/carcin/bgq220 · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin and its derivatives are commonly used anti-cancer drugs. However, cisplatin has clinical limitations including serious side effects and frequent emergence of intrinsic or acquired resistance. Thus, the novel platinum(IV) complex LA-12 represents a promising treatment modality, which shows increased intracellular penetration resulting in improved cytotoxicity in various cancer cell lines, including cisplatin resistant cells. LA-12 disrupts cellular proliferation regardless of the p53 status in the cells, however the potency of the drug is greatly enhanced by the presence of a functional p53, indicating several mechanisms of action. Similarly to cisplatin, an interaction of LA-12 with molecular chaperone Hsp90 was proposed. Binding of LA-12 to Hsp90 was demonstrated by Hsp90 immunoprecipitation followed by platinum measurement using atomic absorption spectrometry (AAS). An inhibitory effect of LA-12 on Hsp90 chaperoning function was shown by decrease of Hsp90-assisted wild-type p53 binding to p21WAF1 promoter sequence in vitro and by accelerated ubiqutination and degradation of primarily unfolded mutant p53 proteins in cells exposed to LA-12. To generalize our findings, LA-12 induced degradation of other Hsp90 client proteins such as Cyclin D1 and estrogen receptor was shown and proved as more efficient in comparison with cisplatin. This newly characterised molecular mechanism of action opens opportunities to design new cancer treatment strategy profitable from unique LA-12 properties, which combine DNA damaging and Hsp90 inhibitory effects.
    Molecular Cancer 06/2010; 9:147. DOI:10.1186/1476-4598-9-147 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: LA-12 is a new platinum (IV) drug with promising cytotoxic effects in a wide range of cancer cell lines. Its confluence-dependent effects were compared with cisplatin (CDDP) and oxaliplatin (L-OHP) in HT-29 cells. Cytotoxicity was determined by MTT test, eosin exclusion assay, and cell number quantification. The cell cycle was analysed using propidium iodide DNA staining (flow cytometry), apoptosis by phosphatidylserine externalisation (annexin-V assay), mitochondrial membrane potential by flow cytometry, nuclear morphology by means of fluorescence microscopy, and PARP cleavage by Western blotting. While L-OHP and CDDP were practically inactive in the subconfluent cell population, LA-12 showed a similar toxicity in both subconfluent and growing populations. All compounds induced apoptosis, although with different potentials. LA-12 was able to overcome confluence-dependent resistance of HT-29 cells observed for other platinum compounds, which may have potential therapeutic use in slowly growing tumours.
    Anticancer research 04/2010; 30(4):1183-8. · 1.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we characterized the effects of LA-12 on tumor cell lines possessing wild type p53 and on p53-deficient/mutant cell lines and the results were compared to those obtained using cisplatin. We have determined changes of p53 levels, of its transcriptional activity, of its posttranscriptional modifications and the effect of the treatment on the cell cycle, on the induction of apoptosis and on gene expression. LA-12 induces weak accumulation of both transcriptionally active p53 tumor suppressor and of p21(WAF1/CIP1) protein. LA-12 and cisplatin also significantly differ in their effects on apoptosis and cell cycle and on gene expression spectra in studied cell lines. LA-12 induces higher apoptosis levels in comparison with those induced by cisplatin, especially in p53-deficient H1299 cells and in MCF-7DD cells with transcriptionally inactive p53. We suggest that LA-12-mediated apoptosis is not fully dependent on p53. This confirms the therapeutic potential of LA-12 as a more potent cytostatic agent for both tumor cells expressing wild type p53 and for p53-deficient or mutant cells.
    Investigational New Drugs 07/2009; 28(4):445-53. DOI:10.1007/s10637-009-9270-4 · 2.93 Impact Factor
  • FEBS Journal 01/2009; 276:256-257. · 3.99 Impact Factor
  • EJC Supplements 10/2008; 6(12):89-89. DOI:10.1016/s1359-6349(08)72210-9 · 9.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The platinum(II)-based complex cisplatin is one of the most frequently used antitumour agents; however, a high incidence of harmful side effects and the frequent emergence of acquired resistance are the major clinical problems. The novel platinum(IV)-based complex LA-12 exhibits a high efficacy against cancer cell lines, including cisplatin-insensitive cells, but the mechanisms by which LA-12 perturbs cell growth are unclear. We tested the effects of LA-12 on the p53 response and demonstrate that LA-12 induces unique changes in the profile of gene expression compared with cisplatin and doxorubicin. Furthermore, the ability of LA-12 to disrupt cellular proliferation is greatly enhanced by the expression of p53 and p53/47 indicating both p53-dependent and p53-independent effects of LA-12. Exposure of the human cancer cell lines H1299, A2780, BT549 and BT474 to LA-12 alters the expression of p53 and p53/47 in both a time-dependent and dose-dependent manner. Treatment of cells with a low concentration of the drug results in accumulation of p53 and p53/47 concomitant with their posttranslational modification, whereas a high dose results in the disappearance of both the forms of p53. The distinct p53 activation profile of LA-12 compared with cisplatin and doxorubicin provides a molecular explanation for the ability of this drug to treat cisplatin-resistant cells and indicates its potential usefulness as an alternative antitumour agent in first-line therapy or as a second-line therapy in patients with acquired cisplatin resistance.
    Anti-Cancer Drugs 05/2008; 19(4):369-79. DOI:10.1097/CAD.0b013e3282f7f500 · 1.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Platinum (IV) derivative with adamantylamine-LA-12-represents a new generation of highly efficient anti-cancer drug derived from cisplatin and is currently in the final stage of phase I clinical trials. Understanding the specific mechanisms of its effects on cell cycle is necessary for defining the mode of action of LA-12. In this study, we characterized the ability of LA-12 to induce cell cycle perturbations in ovarian cancer cell line A2780 as compared to equitoxic cisplatin treatment. LA-12 induced a permanent accumulation of A2780 cells in S phase while cisplatin caused G2/M arrest at 24-h time point, where we also detected an increased expression of Gadd45alpha protein. Although both derivatives induced a rapid increase of p53 expression, this was not associated with a down-regulation of Mdm2 protein. Increased expression of p21(Cip1/WAF1) protein and its association with cyclins A and B1 suggested that this cyclin-dependent kinase inhibitor might contribute significantly to the observed perturbations of cell cycle. The results of this study provide insight into the mechanism of action of platinum-based derivative with adamantylamine on cell cycle in ovarian cancer cells. The differences between effects of LA-12 and cisplatin suggest that more attention should be paid to elucidation of modes of action of novel platinum(IV) complexes at cellular level.
    Investigational New Drugs 11/2007; 25(5):435-43. DOI:10.1007/s10637-007-9062-7 · 2.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new hydrophobic platinum(IV) complex, LA-12, a very efficient anticancer drug lacking cross-resistance with cisplatin (CDDP), is now being tested in clinical trials. Here we investigated the apoptogenic activity of LA-12 and its effect on gap-junctional intercellular communication (GJIC) in the rat liver epithelial cell line WB-F344. LA-12 induced apoptosis much more efficiently than did CDDP due to a combination of rapid penetration into the cell and attack on DNA, leading to fast activation of p53 and caspase-3. Exposure of WB-F344 cells to LA-12 led to rapid induction of the time- and dose-dependent decrease in GJIC. On the molecular level, loss of GJIC induced by LA-12 was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated by the use of inhibitors of ERK activation. Inhibition of GJIC was linked to rapid hyperphosphorylation of connexin-43 and disappearance of connexon clusters from membranes, which was not observed in the case of CDDP.
    Archives of Biochemistry and Biophysics 07/2007; 462(1):54-61. DOI:10.1016/ · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The resistance of tumor cells to cisplatin remains a major cause of treatment failure in cancer patients. In this study, the ability of Pt(IV) complex with adamantylamine-LA-12 and its reduced counterpart with lower oxidation state Pt(II)-LA-9 to overcome intrinsic cisplatin resistance was investigated. The ovarian adenocarcinoma SK-OV-3 cells were exposed to cisplatin, LA-9, or LA-12 for 72 h and the effects of drug concentrations that caused 10% or 50% inhibition of cell proliferation were determined. After 24-72 h of sustained exposure viability, apoptosis and inhibition of proliferation were analyzed. DNA synthesis and cell cycle analysis were performed simultaneously in order to determine the modulation of cell cycle after platinum complexes treatment. Lung Resistance-related Protein (LRP/MVP) was detected in SK-OV-3 cells but not in the other two ovarian cancer lines with different sensitivity to cisplatin. LRP/MVP overexpression may be an important factor contributing to intrinsic cisplatin resistance. Interestingly, Pt(IV) complex-LA-12 had approximately 2.7-fold lower IC(50) concentration than LA-9 or cisplatin in SK-OV-3 cells. Moreover, LA-12 caused persistent accumulation of cells in S-phase of the cell cycle while LA-9 and cisplatin treatment-induced S-phase arrest was transient and shifted to G(2)/M-phase at later intervals. Apoptosis seemed to be not the dominant type of cell death caused by such the derivatives, but it was the most intensive after LA-12 treatment. We found strong differences between effects of Pt(IV) complex-LA-12 and Pt(II) derivatives-LA-9 and cisplatin on cytokinetic parameters. Overall, LA-12 but not its reduced Pt(II) counterpart LA-9 is the compound effective in p53 null human ovarian cancer cells and it is able to overcome intrinsic cisplatin resistance in these cells.
    Gynecologic Oncology 08/2006; 102(1):32-40. DOI:10.1016/j.ygyno.2005.11.016 · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oral anti-tumor activity of a novel platinum(IV) complex, coded as LA-12, with a bulky adamantylamine ligand was evaluated and compared with another platinum(IV) complex satraplatin. The human carcinoma xenografts of colon HCT116, prostate PC3, and ovarian A2780 and A2780/cisR (resistant to cisplatin) were used to evaluate the in-vivo anti-tumor activity. The daily x 5 repeated dose regimen in equimolar doses of LA-12 and satraplatin, administered in 2 cycles, was selected for this evaluation. All doses of LA-12 and satraplatin were significantly effective in comparison with the control. The activities of LA-12 in all doses and all used tumor xenografts were higher than equimolar doses of satraplatin. The highest effect was reached with LA-12 at a dose of 60 mg/kg. The shapes of growth curves of ovarian carcinoma A2780 and its subline resistant to cisplatin after therapy with LA-12 were very similar. This shows that LA-12 is able to overcome resistance to cisplatin.
    Anti-Cancer Drugs 03/2006; 17(2):201-6. DOI:10.1097/00001813-200602000-00012 · 1.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel anti-tumor platinum(IV) complex, coded as LA-12, with a bulky adamantylamine ligand displaying oral activity was prepared and its oral activity was evaluated. The murine ADJ/PC6 plasmacytoma and human A2780 ovarian carcinoma tumor model were used to evaluate the in vivo anti-tumor activity of a single dose and also of repeated doses with comparison to the activity of cisplatin and of the platinum(IV) complex satraplatin. The acute toxicity of LA-12 in mice is relatively low (maximum tolerated dose 1000 mg/kg), and the effective dose is comparable to that of cisplatin and higher than that of satraplatin. The therapeutic index derived from this is very high (250). In the human tumor model, two repeated dose schedule regimens were evaluated. LA-12 exerted a significantly higher anti-tumor activity than other substances, i.e. cisplatin and satraplatin, in repeated doses on the murine ADJ/PC6 plasmacytoma tumor model. The dailyx5 repeated dose regimen was selected for further evaluation.
    Anti-Cancer Drugs 08/2005; 16(6):653-7. DOI:10.1097/00001813-200507000-00010 · 1.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: [(OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum(IV)], coded as LA-12, is an octahedral platinum(IV) complex containing a bulky hydrophobic ligand - adamantylamine. The use of bulky hydrophobic amines as non-leaving ligands, may increase uptake of the compound by the cancer cells. Therefore, the effects of LA-12 on sensitive (A2780) and cisplatin resistant (A2780cis) ovarian cancer cell lines were investigated and compared to those of cisplatin. IC(50) and IC(90) concentrations of LA-12 were 6- (A2780) or 18-fold (A2780cis) lower than those for cisplatin (MTT assay). Equitoxic concentrations (IC(50) or IC(90)) of both compounds caused a significant and similar time- and dose-dependent inhibition of cell proliferation and an increase in the number of floating cells which corresponded to the decrease of total cell viability. A different type and dynamics of cell cycle perturbation after cisplatin and LA-12 treatment were detected. Exposure to LA-12 resulted in transient accumulation of A2780 and A2780cis cells in S phase, while cisplatin caused G(2)/M arrest in sensitive and S phase arrest in resistant cells. A relatively low rate of apoptosis after exposure to IC(50) or IC(90) of both complexes was observed, markedly higher in resistant A2780cis cells. Western blot analysis indicated a concentration-dependent p53 level increase in both lines (higher after cisplatin treatment). PARP cleavage was observed only in A2780cis cells. In conclusion, LA-12 was found to be significantly more efficient than cisplatin, and it was able to overcome the acquired cisplatin resistance (showing resistance factor 2.84-fold lower than those for cisplatin). In spite of the low rate of apoptosis, LA-12 caused increase of p53 level and cell cycle perturbations in the ovarian cancer cell lines studied.
    Biochemical Pharmacology 03/2005; 69(3):373-83. DOI:10.1016/j.bcp.2004.09.005 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pharmacokinetics of total and free plasma platinum (Pt) and Pt tissue distribution were investigated in rats after oral administration of (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum(IV) (LA-12). Plasma and ultrafiltrate were sampled until 48 h and tissue samples were taken at 24 and 48 h after single doses of 38.6 or 540 mg LA-12/kg, and after once-a-day dosing of 4.3 or 38.6 mg kg(-1) LA-12 over 14 consecutive days. Total plasma Pt concentrations increased less than proportionally to the 14-fold increase in the single dose. The mean C(max) values of 1.5 and 6.3 mg L(-1) were observed at 0.5 and 1 h, respectively, and the mean AUC values achieved were 29 and 144 mg h L(-1). The highest tissue Pt concentrations were found in the liver and kidneys. Platinum was undetectable in the brain while in other tissues (muscle, skin, heart, lungs), the concentrations were lower (after single dose) or similar (after multiple doses) when compared to the plasma C(max) values. Plasma Pt concentrations after once-a-day dosing of 38.6 mg kg(-1) were two- to three-fold less than that after a single dose while Pt concentrations in various tissues rose two- to four-fold. Accumulation of Pt was even higher in the kidneys (seven-fold) and spleen (nine-fold). After once-a-day dosing, tissue Pt levels increased proportionally with the dose within the range from 4.3 to 38.6 mg kg(-1). At the same time, the increase in total plasma Pt concentrations was 40% less than proportional. Concentrations of Pt in the plasma ultrafiltrate decreased rapidly with the initial half-life of 1 h.
    International Journal of Pharmaceutics 02/2005; 288(1):123-9. DOI:10.1016/j.ijpharm.2004.09.020 · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to compare anti-tumor potency of platinum(IV) complexes with increasing hydrophobicity of their ligands. Cytotoxic potential of the new platinum(IV) complex, coded as LA-12 [(OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum(IV)], was compared within the series of complexes of the general formula (OC-6-43)-bis(acetato)(alkylamine)amminedichloroplatinum(IV). Alkylamine ligands with increasing hydrophobicity were: isopropylamine, cyclohexylamine, 1-adamantylamine and 3,5-dimethyl-1-adamantylamine. Particular platinum(IV) complexes were coded as LA-4, LA-2 (known as JM-216), LA-12 and LA-15, respectively. Cytotoxicity was tested with the microplate tetrazolium (MTT) assay on the panel of cancer cell lines and the results were verified by microscopy. HPLC was used to measure hydrophobicity, stability of complexes in various buffers and velocity constants for their reactivity with glutathione. Platinum(IV) complexes with bulky hydrophobic ligands (LA-12 and LA-15) demonstrated about one order higher velocity constant for pseudo-first-order reaction with glutathione in comparison to cisplatin, LA-4 and LA-2, whose velocity constants were close to those measured for cisplatin and related platinum(II) complexes. Cytotoxicities of LA-12 and LA-15 towards cisplatin-resistant epithelial carcinoma A2780/cisR were superior to cisplatin, LA-4 and LA-2 in both 24- and 72-h continuous exposure MTT tests. Rapid induction of apoptosis in the treated cancer cell lines and no cisplatin cross-resistance were found for LA-12, which is a candidate for clinical testing.
    Anti-Cancer Drugs 07/2004; 15(5):537-43. DOI:10.1097/01.cad.0000127147.57796.e5 · 1.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Procedure of the synthesis is described for new platinum(IV) drug LA-12 [(OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum(IV)]. The X-ray diffraction analysis shows that the structure is created by molecules with octahedral arrangement of ligands around a platinum atom and contains one H(2)O molecule that is not a part of the coordination sphere of platinum. This new drug is more reactive with glutathione than cisplatin and is lacking cross-resistance with cisplatin as proven on the panel of cancer cell lines.
    Journal of Medicinal Chemistry 02/2004; 47(3):761-3. DOI:10.1021/jm030858+ · 5.48 Impact Factor

Publication Stats

249 Citations
72.35 Total Impact Points


  • 2010
    • Academy of Sciences of the Czech Republic
      • Oddělení cytokinetiky
      Praha, Hlavni mesto Praha, Czech Republic
  • 2004
    • Masaryk University
      • Department of Inorganic Chemistry
      Brünn, South Moravian, Czech Republic