Rogier Kersseboom

Erasmus Universiteit Rotterdam, Rotterdam, South Holland, Netherlands

Are you Rogier Kersseboom?

Claim your profile

Publications (10)77.82 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: INTRODUCTION: In 9-17% of Wilms tumour patients a predisposing syndrome is present, in particular WT1-associated syndromes and overgrowth syndromes. Constitutional WT1 mutations or epigenetic changes on chromosome 11p15 have also been described in Wilms tumour patients without phenotypic abnormalities. Thus, the absence of phenotypic abnormalities does not exclude the presence of a genetic predisposition, suggesting that more Wilms tumour patients may have a constitutional abnormality. Therefore, we investigated the frequency of constitutional aberrations in combination with phenotype. PATIENTS & METHODS: Clinical genetic assessment, as well as molecular analysis of WT1 and locus 11p15 was offered to a single-centre cohort of 109 childhood Wilms tumour patients. RESULTS: Twelve patients (11%) had a WT1 aberration and eight patients (8%) had an 11p15 aberration. Of the 12 patients with a WT1 aberration, four had WAGR syndrome (Wilms tumor, aniridia, genitourinary malformations and mental retardation), one had Denys-Drash syndrome, four had genitourinary anomalies without other syndromic features and three had bilateral disease with stromal-predominant histology at young age without congenital anomalies. Of the eight patients with an 11p15 aberration, four had Beckwith-Wiedemann syndrome (BWS), two had minor features of BWS and two had no stigmata of BWS or hemihypertrophy. CONCLUSION: Constitutional WT1 or 11p15 aberrations are frequent in Wilms tumour patients and careful clinical assessment can identify the majority of these patients. Therefore, we would recommend offering clinical genetic counselling to all Wilms tumour patients, as well as molecular analysis to patients with clinical signs of a syndrome or with features that may indicate a constitutional WT1 or 11p15 aberration.
    European journal of cancer (Oxford, England: 1990) 07/2012; · 4.12 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Heterozygous germline PTEN mutations cause Cowden syndrome. The risk of colorectal cancer in Cowden patients, however, remains a matter of debate. We describe two patients presenting with colorectal cancer at a young age (28 and 39 years) and dysmorphisms fitting the Cowden spectrum. Heterozygous germline mutations in PTEN were found in both patients. Moreover, analysis of the resected colorectal cancer specimens revealed loss of heterozygosity at the PTEN locus with retention of the mutated alleles, and greatly reduced or absent PTEN expression. Histologically and molecularly, the tumours showed resemblance with sporadic colorectal cancers, although they had prominent fibrotic stroma. Our data indicate that PTEN loss was involved in carcinogenesis in the two patients, supporting that colorectal cancer is part of the Cowden syndrome-spectrum. This is in line with data on sporadic colorectal cancer, mice studies and emerging epidemiological data on Cowden syndrome. Although the exact role of germline PTEN mutations in the carcinogenesis of colorectal cancer remains unclear, we think that Cowden syndrome should be in the differential diagnosis of colorectal cancer certainly in view of the possible prognostic and therapeutic consequences. Prospective follow-up and surveillance of PTEN mutation carriers from the age of 25 to 30 years in a study setting should clarify this issue.
    Clinical Genetics 02/2011; 81(6):555-62. · 4.25 Impact Factor
  • Source
    Rogier Kersseboom, Alice Brooks, Corry Weemaes
    [show abstract] [hide abstract]
    ABSTRACT: The syndromic primary immunodeficiencies are disorders in which not only the immune system but also other organ systems are affected. Other features most commonly involve the ectodermal, skeletal, nervous, and gastrointestinal systems. Key in identifying syndromic immunodeficiencies is the awareness that increased susceptibility to infections or immune dysregulation in a patient known to have other symptoms or special features may hint at an underlying genetic syndrome. Because the extraimmune clinical features can be highly variable, it is more difficult establishing the correct diagnosis. Nevertheless, correct diagnosis at an early age is important because of the possible treatment options. Therefore, diagnostic work-up is best performed in a center with extensive expertise in this field, having immunologists and clinical geneticists, as well as adequate support from a specialized laboratory at hand. This paper provides the general pediatrician with the main clinical features that are crucial for the recognition of these syndromes.
    European Journal of Pediatrics 02/2011; 170(3):295-308. · 1.91 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: B-cell receptor (BCR)-mediated signals provide the basis for B-cell differentiation in the BM and subsequently into follicular, marginal zone, or B-1 B-cell subsets. We have previously shown that B-cell-specific expression of the constitutive active E41K mutant of the BCR-associated molecule Bruton's tyrosine kinase (Btk) leads to an almost complete deletion of immature B cells in the BM. Here, we report that low-level expression of the E41K or E41K-Y223F Btk mutants was associated with reduced follicular B-cell numbers and significantly increased proportions of B-1 cells in the spleen. Crosses with 3-83 mu delta and VH81X BCR Tg mice showed that constitutive active Btk expression did not change follicular, marginal zone, or B-1 B-cell fate choice, but resulted in selective expansion or survival of B-1 cells. Residual B cells were hyperresponsive and manifested sustained Ca(2+) mobilization. They were spontaneously driven into germinal center-independent plasma cell differentiation, as evidenced by increased numbers of IgM(+) plasma cells in spleen and BM and significantly elevated serum IgM. Because anti-nucleosome autoantibodies and glomerular IgM deposition were present, we conclude that constitutive Btk activation causes defective B-cell tolerance, emphasizing that Btk signals are essential for appropriate regulation of B-cell activation.
    European Journal of Immunology 09/2010; 40(9):2643-54. · 4.97 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The adapter protein Slp65 is a key component of the precursor-B (pre-B) cell receptor. Slp65-deficient mice spontaneously develop pre-B cell leukemia, but the mechanism by which Slp65(-/-) pre-B cells become malignant is unknown. Loss of Btk, a Tec-family kinase that cooperates with Slp65 as a tumor suppressor, synergizes with deregulation of the c-Myc oncogene during lymphoma formation. Here, we report that the presence of the immunoglobulin heavy chain transgene V(H)81X prevented tumor development in Btk(-/-)Slp65(-/-) mice. This finding paralleled the reported effect of a human immunoglobulin heavy chain transgene on lymphoma development in Emu-myc mice, expressing transgenic c-Myc. Because activation of c-Myc strongly selects for spontaneous inactivation of the p19(Arf)-Mdm2-p53 tumor suppressor pathway, we investigated whether disruption of this pathway is a common alteration in Slp65(-/-) pre-B cell tumors. We found that combined loss of Slp65 and p53 in mice transformed pre-B cells very efficiently. Aberrations in p19(Arf), Mdm2, or p53 expression were found in all Slp65(-/-) (n = 17) and Btk(-/-)Slp65(-/-) (n = 32) pre-B cell leukemias analyzed. In addition, 9 of 10 p53(-/-)Slp65(-/-) pre-B cell leukemias manifested significant Mdm2 protein expression. These data indicate that malignant transformation of Slp65(-/-) pre-B cells involves disruption of the p19(Arf)-Mdm2-p53 tumor suppressor pathway.
    Blood 12/2009; 115(7):1385-93. · 9.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Control of integrin-mediated adhesion and migration by chemokines plays a critical role in B cell development, differentiation, and function; however, the underlying signaling mechanisms are poorly defined. Here we show that the chemokine SDF-1 induced activation of Bruton's tyrosine kinase (Btk) and that integrin-mediated adhesion and migration in response to SDF-1 or CXCL13, as well as in vivo homing to lymphoid organs, was impaired in Btk-deficient (pre-)B cells. Furthermore, SDF-1 induced tyrosine phosphorylation of Phospholipase Cgamma2 (PLCgamma2), which, unlike activation of the migration regulatory GTPases Rac or Rap1, was mediated by Btk. PLCgamma2-deficient B cells also exhibited impaired SDF-1-controlled migration. These results reveal that Btk and PLCgamma2 mediate chemokine-controlled migration, thereby providing insights into the control of B cell homeostasis, trafficking, and function, as well as into the pathogenesis of the immunodeficiency disease X-linked agammaglobulinemia (XLA).
    Immunity 02/2007; 26(1):93-104. · 19.80 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Bruton's tyrosine kinase (Btk) and the adapter protein SLP-65 (Src homology 2 domain-containing leukocyte-specific phosphoprotein of 65 kDa) transmit precursor BCR (pre-BCR) signals that are essential for efficient developmental progression of large cycling into small resting pre-B cells. We show that Btk- and SLP-65-deficient pre-B cells have a specific defect in Ig lambda L chain germline transcription. In Btk/SLP-65 double-deficient pre-B cells, both kappa and lambda germline transcripts are severely reduced. Although these observations point to an important role for Btk and SLP-65 in the initiation of L chain gene rearrangement, the possibility remained that these signaling molecules are only required for termination of pre-B cell proliferation or for pre-B cell survival, whereby differentiation and L chain rearrangement is subsequently initiated in a Btk/SLP-65-independent fashion. Because transgenic expression of the antiapoptotic protein Bcl-2 did not rescue the developmental arrest of Btk/SLP-65 double-deficient pre-B cells, we conclude that defective L chain opening in Btk/SLP-65-deficient small resting pre-B cells is not due to their reduced survival. Next, we analyzed transgenic mice expressing the constitutively active Btk mutant E41K. The expression of E41K-Btk in Ig H chain-negative pro-B cells induced 1) surface marker changes that signify cellular differentiation, including down-regulation of surrogate L chain and up-regulation of CD2, CD25, and MHC class II; and 2) premature rearrangement and expression of kappa and lambda light chains. These findings demonstrate that Btk and SLP-65 transmit signals that induce cellular maturation and Ig L chain rearrangement independently of their role in termination of pre-B cell expansion.
    The Journal of Immunology 05/2006; 176(8):4543-52. · 5.52 Impact Factor
  • Source
    Rudi W Hendriks, Rogier Kersseboom
    [show abstract] [hide abstract]
    ABSTRACT: Signals from the precursor-B cell receptor (pre-BCR) are essential for selection and clonal expansion of pre-B cells that have performed productive immunoglobulin heavy chain V(D)J recombination. In the mouse, the downstream signaling molecules SLP-65 and Btk cooperate to limit proliferation and induce differentiation of pre-B cells, thereby acting as tumor suppressors to prevent pre-B cell leukemia. In contrast, recent observations in human BCR-ABL1(+) pre-B lymphoblastic leukemia cells demonstrate that Btk is constitutively phosphorylated and activated by the BCR-ABL1 fusion protein. As a result, activated Btk transmits survival signals that are essential for the transforming activity of oncogenic Abl tyrosine kinase.
    Seminars in Immunology 03/2006; 18(1):67-76. · 5.93 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: During B-cell development in the mouse, Bruton tyrosine kinase (Btk) and the adaptor protein SLP-65 (Src homology 2 [SH2] domain-containing leukocyte protein of 65 kDa) limit the expansion and promote the differentiation of pre-B cells. Btk is thought to mainly function by phosphorylating phospholipase Cgamma2, which is brought into close proximity of Btk by SLP-65. However, this model was recently challenged by the identification of a role for Btk as a tumor suppressor in the absence of SLP-65 and by the finding that Btk function is partially independent of its kinase activity. To investigate if enzymatic activity is critical for the tumor suppressor function of Btk, we crossed transgenic mice expressing the kinase-inactive K430R-Btk mutant onto a Btk/SLP-65 double-deficient background. We found that K430R-Btk expression rescued the severe developmental arrest at the pre-B-cell stage in Btk/SLP-65 double-deficient mice. Moreover, K430R-Btk could functionally replace wild-type Btk as a tumor suppressor in SLP-65- mice: at 6 months of age, the observed pre-B-cell lymphoma frequencies were approximately 15% for SLP-65- mice, 44% for Btk/SLP-65-deficient mice, and 14% for K430R-Btk transgenic mice on the Btk/SLP-65-deficient background. Therefore, we conclude that Btk exerts its tumor suppressor function in pre-B cells as an adaptor protein, independent of its catalytic activity.
    Blood 02/2005; 105(1):259-65. · 9.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Expression of the pre-B cell receptor (pre-BCR) leads to activation of the adaptor molecule SLP-65 and the cytoplasmic kinase Btk. Mice deficient for one of these signaling proteins have an incomplete block in B cell development at the stage of large cycling pre-BCR+CD43+ pre-B cells. Our recent findings of defective SLP-65 expression in approximately 50% of childhood pre-B acute lymphoblastic leukemias and spontaneous pre-B cell lymphoma development in SLP-65-/- mice demonstrate that SLP-65 acts as a tumor suppressor. To investigate cooperation between Btk and SLP-65, we characterized the pre-B cell compartment in single and double mutant mice, and found that the two proteins have a synergistic role in the developmental progression of large cycling into small resting pre-B cells. We show that Btk/SLP-65 double mutant mice have a dramatically increased pre-B cell tumor incidence ( approximately 75% at 16 wk of age), as compared with SLP-65 single deficient mice (<10%). These findings demonstrate that Btk cooperates with SLP-65 as a tumor suppressor in pre-B cells. Furthermore, transgenic low-level expression of a constitutive active form of Btk, the E41K-Y223F mutant, prevented tumor formation in Btk/SLP-65 double mutant mice, indicating that constitutive active Btk can substitute for SLP-65 as a tumor suppressor.
    Journal of Experimental Medicine 07/2003; 198(1):91-8. · 13.21 Impact Factor

Publication Stats

142 Citations
78 Downloads
820 Views
77.82 Total Impact Points

Institutions

  • 2011
    • Erasmus Universiteit Rotterdam
      • Department of Clinical Genetics
      Rotterdam, South Holland, Netherlands
  • 2005–2011
    • Erasmus MC
      • • Department of Clinical Genetics
      • • Department of Immunology
      Rotterdam, South Holland, Netherlands