Jens Kroll

Martin Luther University of Halle-Wittenberg, Halle-on-the-Saale, Saxony-Anhalt, Germany

Are you Jens Kroll?

Claim your profile

Publications (30)205.25 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperglycemia causes micro- and macrovascular complications in diabetic patients. Elevated glucose (gluc) concentrations lead to increased formation of the highly reactive dicarbonyl methylglyoxal (MG); yet, the early consequences of MG for development of vascular complications in vivo is poorly understood. In this study zebrafish was used as a model organism to analyze early vascular effects and mechanisms of MG in vivo. High tissue glucose increased MG concentrations in tg(fli:EGFP) zebrafish embryos and rapidly induced several additional malformed and uncoordinated blood vessel structures that originated out of existing intersomitic blood vessels. However, larger blood vessels including the dorsal aorta and common cardinal vein were not affected. Expression silencing of MG degrading enzyme glyoxalase 1 (glo1) elevated MG concentrations and induced a similar vascular hyperbranching phenotype in zebrafish. MG enhanced phosphorylation of VEGF receptor 2 and its downstream target Akt/PKB. Pharmacological inhibitors for VEGF receptor 2 and Akt/PKB as well as MG scavenger aminoguanidine and glo1 activation prevented MG induced hyperbranching of intersomitic blood vessels. Taken together, MG acts on smaller blood vessels in zebrafish via the VEGF receptor signalling cascade, thereby describing a new mechanism that can explain vascular complications under hyperglycemia and elevated MG concentrations.
    Diabetes 08/2014; · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Corneal neovascularisation can cause loss of vision. The introduction of anti-VEGF therapy has been a major improvement of therapeutic options. Recently, we established Kelch-like Ect2-interacting protein (KLEIP) knockout mice as a model of spontaneous corneal neovascular dystrophy. The aim of the present study was to characterize corneal neovascularisation in progressive corneal dystrophy in KLEIP-/- mice, to evaluate the efficacy of anti-VEGF therapy and to identify novel molecular regulators in this experimental model. Methods: Corneal neovascularisation was assessed by immunohistochemistry. VEGF signalling was inhibited by injection of a blocking antibody. Microarrays were used to measure expression of mRNA and miRNA in dystrophic corneae. Results were validated by IHC and Western blotting. Results: Blood vessels and lymphatics grew from the limbus towards the dystrophic epithelium in corneae of KLEIP-/- mice. Blocking VEGF signalling did not reduce phenotype progression. Correspondingly, microarray analysis revealed no upregulation of canonical vascular growth factors in late dystrophy. During phenotype progression, angiopoietin-1 expression increased while miR-204 expression decreased. Bioinformatical analysis identified a binding site for miR-204 in the angiopoietin-1 gene. Validation by in vitro experiments confirmed regulation of angiopoietin-1 by miR-204. Conclusion: VEGF does not act as a major player in corneal neovascularisation in KLEIP-/- mice. However, the pro-angiogenic factor angiopoietin-1 was strongly upregulated in late stage phenotype, correlating with loss of miR-204 expression. Correspondingly, we identified miR-204 as a novel regulator of angiopoietin-1 in vitro. These findings may explain the incomplete efficacy of anti-VEGF therapy in the clinic and may provide new candidates for pharmaceutical intervention.
    Investigative ophthalmology & visual science. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory distress syndrome (RDS) caused by preterm delivery is a major clinical problem with limited mechanistic insight. Late stage embryonic lung development is driven by hypoxia and hypoxia inducible transcription factors Hif-1α and Hif-2α, which act as important regulators for lung development. Expression of BTB-kelch protein KLEIP (Kelch-like ECT2 interacting protein; also named Klhl20) is controlled by two hypoxia response elements and KLEIP regulates stabilization and transcriptional activation of Hif-2α. Based on the data, we hypothesised an essential role for KLEIP in murine lung development and function. Therefore, we have performed a functional, histological, mechanistic and interventional study in embryonic and neonatal KLEIP(-/-) mice. Here we show that half of the KLEIP(-/-) neonates die due to respiratory failure that is caused by insufficient aeration, septal thickness, reduced glycogenolysis, type II pneumocyte immaturity and reduced surfactant production. Expression analyses in E18.5 lungs identified KLEIP in lung capillaries and strongly reduced mRNA and protein levels for Hif-2α and VEGF, which is associated with embryonic endothelial cell apoptosis and lung bleedings. Betamethasone injection in pregnant females prevented respiratory failure in KLEIP(-/-) neonates, normalized lung maturation, aeration and function and increased neonatal Hif-2α expression. Thus, the experimental study shows that respiratory failure in KLEIP(-/-) neonates is determined by insufficient angiocrine Hif-2α/VEGF signaling and that betamethasone activates this new identified signaling cascade in late stage embryonic lung development.
    Disease Models and Mechanisms 05/2014; · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β1-Integrins are essential for angiogenesis. The mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. Brag2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of Brag2 in EC and angiogenesis and the underlying molecular mechanisms remain unclear. siRNA-mediated Brag2-silencing reduced EC angiogenic sprouting and migration. Brag2-siRNA transfection differentially affected α5β1- and αVβ3-integrin function: specifically, Brag2-silencing increased focal/fibrillar adhesions and adhesion on β1-integrin ligands (fibronectin and collagen), while reducing the adhesion on the αVβ3-integrin ligand, vitronectin. Consistent with these results, Brag2-silencing enhanced surface expression of α5β1-integrin, while reducing surface expression of αVβ3-integrin. Mechanistically, Brag2-mediated αVβ3-integrin-recycling and β1-integrin endocytosis and specifically of the active/matrix-bound α5β1-integrin present in fibrillar/focal adhesions (FA), suggesting that Brag2 contributes to the disassembly of FA via β1-integrin endocytosis. Arf5 and Arf6 are promoting downstream of Brag2 angiogenic sprouting, β1-integrin endocytosis and the regulation of FA. In vivo silencing of the Brag2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitreal injection of plasmids containing Brag2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveal that Brag2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating β1-integrin internalization and link for the first time the process of β1-integrin endocytosis with angiogenesis.
    Archiv für Kreislaufforschung 03/2014; 109(2):404. · 7.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Histone deacetylases (HDACs) modulate gene expression by deacetylation of histone and nonhistone proteins. Several HDACs control angiogenesis, but the role of HDAC9 is unclear. METHODS AND RESULTS: Here, we analyzed the function of HDAC9 in angiogenesis and its involvement in regulating microRNAs. In vitro, silencing of HDAC9 reduces endothelial cell tube formation and sprouting. Furthermore, HDAC9 silencing decreases vessel formation in a spheroid-based Matrigel plug assay in mice and disturbs vascular patterning in zebrafish embryos. Genetic deletion of HDAC9 reduces retinal vessel outgrowth and impairs blood flow recovery after hindlimb ischemia. Consistently, overexpression of HDAC9 increases endothelial cell sprouting, whereas mutant constructs lacking the catalytic domain, the nuclear localization sequence, or sumoylation site show no effect. To determine the mechanism underlying the proangiogenic effect of HDAC9, we measured the expression of the microRNA (miR)-17-92 cluster, which is known for its antiangiogenic activity. We demonstrate that silencing of HDAC9 in endothelial cells increases the expression of miR-17-92. Inhibition of miR-17-20a rescues the sprouting defects induced by HDAC9 silencing in vitro and blocking miR-17 expression partially reverses the disturbed vascular patterning of HDAC9 knockdown in zebrafish embryos. CONCLUSIONS: We found that HDAC9 promotes angiogenesis and transcriptionally represses the miR-17-92 cluster.
    Arteriosclerosis Thrombosis and Vascular Biology 01/2013; · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HOXC9 belongs to the family of homeobox transcription factors, which are regulators of body patterning and development. HOXC9 acts as a negative regulator on blood endothelial cells but its function on lymphatic vessel development has not been studied. The hyaluronan receptor homologs stabilin 1 and stabilin 2 are expressed in endothelial cells but their role in vascular development is poorly understood. This study was aimed at investigating the function of HOXC9, stabilin 2 and stabilin 1 in lymphatic vessel development in zebrafish and in endothelial cells. Morpholino-based expression silencing of HOXC9 repressed parachordal lymphangioblast assembly and thoracic duct formation in zebrafish. HOXC9 positively regulated stabilin 2 expression in zebrafish and in HUVECs and expression silencing of stabilin 2 phenocopied the HOXC9 morphant vascular phenotype. This effect could be compensated by HOXC9 mRNA injection in stabilin 2 morphant zebrafish embryos. Stabilin 1 also regulated parachordal lymphangioblast and thoracic duct formation in zebrafish but acts independently of HOXC9. On a cellular level stabilin 1 and stabilin 2 regulated endothelial cell migration and in-gel sprouting angiogenesis in endothelial cells. HOXC9 was identified as novel transcriptional regulator of parachordal lymphangioblast assembly and thoracic duct formation in zebrafish that acts via stabilin 2. Stabilin 1, which acts independently of HOXC9, has a similar function in zebrafish and both receptors control important cellular processes in endothelial cells.
    PLoS ONE 01/2013; 8(3):e58311. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase D isoenzymes (PKDs, Prkds) are serine threonine kinases that belong to the CAMK superfamily. PKD1 is expressed in endothelial cells and is a major mediator of biological responses downstream of the VEGFRs that are relevant for angiogenesis such as endothelial cell migration, proliferation and tubulogenesis in vitro. PKDs also play a critical role in tumor development and progression, including tumor angiogenesis. However, given the plethora of signaling modules that drive angiogenesis, the precise role of PKD1 in both physiological and tumor angiogenesis in vivo has not been worked out so far. This study aimed at dissecting the contribution of PKD1 to physiological blood vessel formation, PKD1 was found to be widely expressed during zebrafish development. As far as physiological angiogenesis was concerned, morpholino-based silencing of PKD1 expression moderately reduced the formation of the intersomitic vessels and the dorsal longitudinal anastomotic vessel in tg(fli1:EGFP) zebrafish. In addition, silencing of PKD1 resulted in reduced formation of the parachordal lymphangioblasts that serves as a precursor for the developing thoracic duct. Interestingly, tumor angiogenesis was completely abolished in PKD1 morphants using the zebrafish/tumor xenograft angiogenesis assay. Our data in zebrafish demonstrate that PKD1 contributes to the regulation of physiological angiogenesis and lymphangiogenesis during zebrafish development and is essential for tumor angiogenesis.
    PLoS ONE 01/2013; 8(7):e68033. · 3.73 Impact Factor
  • Jakob Nikolas Kather, Jens Kroll
    [Show abstract] [Hide abstract]
    ABSTRACT: The angiogenic cascade is a multi-step process essential for embryogenesis and other physiological and pathological processes. Rho family GTPases are binary molecular switches and serve as master regulators of various basic cellular processes. Rho GTPases are known to exert important functions in angiogenesis and vascular physiology. These functions demand a tight and context-specific control of cellular processes requiring superordinate control by a multitude of guanine nucleotide exchange factors (GEFs). GEFs display various features enabling them to fine-tune the actions of Rho GTPases in the vasculature: (1) GEFs regulate specific steps of the angiogenic cascade; (2) GEFs show a spatio-temporally specific expression pattern; (3) GEFs differentially regulate endothelial function depending on their subcellular location; (4) GEFs mediate crosstalk between complex signaling cascades and (5) GEFs themselves are regulated by another layer of interacting proteins. The aim of this review is to provide an overview about the role of GEFs in regulating angiogenesis and vascular function and to point out current limitations as well as clinical perspectives.
    Experimental Cell Research 12/2012; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Formation and remodeling of the vasculature during development and disease involves a highly conserved and precisely regulated network of attractants and repellants. Various signaling pathways control the behavior of endothelial cells, but their post-transcriptional dose-titration by miRNAs is poorly understood. Objective: To identify miRNAs that regulate angiogenesis. Methods and Results: We show that the highly conserved microRNA family encoding miR-10 regulates the behavior of endothelial cells during angiogenesis by positively titrating pro-angiogenic signaling. Knockdown of miR-10 led to premature truncation of intersegmental vessel growth (ISV) in the trunk of zebrafish larvae, while overexpression of miR-10 promoted angiogenic behavior in zebrafish and cultured human umbilical venous endothelial cells (HUVECs). We found that miR-10 functions, in part, by directly regulating the level of fms-related tyrosine kinase 1 (FLT1), a cell-surface protein that sequesters VEGF, and its soluble splice variant sFLT1. The increase in FLT1/sFLT1 protein levels upon miR-10 knockdown in zebrafish and in HUVECs inhibited the angiogenic behavior of endothelial cells largely by antagonizing VEGF receptor-2 signaling. Conclusions: Our study provides insights into how FLT1 and VEGF receptor-2 signaling is titrated in a miRNA-mediated manner and establishes miR-10 as a potential new target for the selective modulation of angiogenesis.
    Circulation Research 09/2012; · 11.86 Impact Factor
  • Sandra Jasmin Stoll, Jens Kroll
    [Show abstract] [Hide abstract]
    ABSTRACT: The members of the HOX transcription factor family are important basic regulators of morphogenesis and development and several HOX proteins have also been identified as essential regulators of physiological and pathologic angiogenesis. HOXC9 is highly expressed in quiescent endothelial cells and keeps the vasculature in a resting state via inhibition of interleukin-8 production. HOXC9 overexpression in zebra-fish negatively regulated vascular development which can be rescued by exogenous interleukin-8. The further understanding of the HOXC9-IL-8 signaling axis and the identification of other HOXC9 targets in the vasculature will provide important insights into mechanisms promoting endothelial cell activation during physiological angiogenesis. It will also be beneficial to understand pathophysiological angiogenesis regulation and thus provide important new directions for the development of novel anti-angiogenic therapeutic strategies.
    Trends in cardiovascular medicine 07/2012; 22(1):7-11. · 4.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The BTB-kelch protein KLEIP/KLHL20 is an actin binding protein that regulates cell-cell contact formation and cell migration. The aim of our study was to characterize KLEIP's function in ocular health and disease in mice. KLEIP(-/-) mice were generated, and corneas were examined histologically and stained for keratin-1, loricrin, keratin-12, keratin-14, CD31, LYVE-1, F4/80, E-cadherin, and Ki67. Corneal abrasions were performed after eyelid opening. Corneas of KLEIP(+/+) and KLEIP(-/-) mice were indistinguishable at birth. After eyelid opening corneal epithelial hyperplasia started to manifest in KLEIP(-/-) mice, showing a progressive epithelial metaplasia leading to total corneal opacity. In KLEIP(-/-) mice the initial stratified squamous corneal epithelium was altered to an epidermal histo-architecture showing several superficial keratinized cells, cell infiltrations into the stroma, and several apoptotic cells. Skin markers keratin 1 and loricrin were positive, and surface disease was accompanied by deep stromal vascularization. Expression analysis for E-cadherin in KLEIP(-/-) corneas showed acellular areas in the squamous epithelium, indicating a progressive fragile corneal integrity. Removal of the virgin epithelium accelerated strongly development of the epithelial and stromal alterations, identifying mechanical injuries as the major trigger for corneal dystrophy formation and scarification in KLEIP(-/-) mice. The data identify KLEIP as an important molecule regulating corneal epithelial integrity.
    Investigative ophthalmology & visual science 04/2012; 53(6):3260-8. · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) is a main stimulator of pathological vessel formation. Nevertheless, increasing evidence suggests that Angiotensin II (Ang II) can play an augmentory role in this process. We thus analyzed the contribution of the two Ang II receptor types, AT(1)R and AT(2)R, in a mouse model of VEGF-driven angiogenesis, i.e. oxygen-induced proliferative retinopathy. Application of the AT(1)R antagonist telmisartan but not the AT(2)R antagonist PD123,319 largely attenuated the pathological response. A direct effect of Ang II on endothelial cells (EC) was analyzed by assessing angiogenic responses in primary bovine retinal and immortalized rat microvascular EC. Selective stimulation of the AT(1)R by Ang II in the presence of PD123,319 revealed a pro-angiogenic activity which further increased VEGF-driven EC sprouting and migration. In contrast, selective stimulation of the AT(2)R by either CGP42112A or Ang II in the presence of telmisartan inhibited the VEGF-driven angiogenic response. Using specific inhibitors (pertussis toxin, RGS proteins, kinase inhibitors) we identified G(12/13) and G(i) dependent signaling pathways as the mediators of the AT(1)R-induced angiogenesis and the AT(2)R-induced inhibition, respectively. As AT(1)R and AT(2)R stimulation displays opposing effects on the activity of the monomeric GTPase RhoA and pro-angiogenic responses to Ang II and VEGF requires activation of Rho-dependent kinase (ROCK), we conclude that the opposing effects of the Ang II receptors on VEGF-driven angiogenesis converge on the regulation of activity of RhoA-ROCK-dependent EC migration.
    Cellular signalling 02/2012; 24(6):1261-9. · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRs) are small RNAs that regulate gene expression at the posttranscriptional level. miR-27 is expressed in endothelial cells, but the specific functions of miR-27b and its family member miR-27a are largely unknown. Here we demonstrate that overexpression of miR-27a and miR-27b significantly increased endothelial cell sprouting. Inhibition of both miR-27a and miR-27b impaired endothelial cell sprout formation and induced endothelial cell repulsion in vitro. In vivo, inhibition of miR-27a/b decreased the number of perfused vessels in Matrigel plugs and impaired embryonic vessel formation in zebrafish. Mechanistically, miR-27 regulated the expression of the angiogenesis inhibitor semaphorin 6A (SEMA6A) in vitro and in vivo and targeted the 3'-untranslated region of SEMA6A. Silencing of SEMA6A partially reversed the inhibition of endothelial cell sprouting and abrogated the repulsion of endothelial cells mediated by miR-27a/b inhibition, indicating that SEMA6A is a functionally relevant miR-27 downstream target regulating endothelial cell repulsion. In summary, we show that miR-27a/b promotes angiogenesis by targeting the angiogenesis inhibitor SEMA6A, which controls repulsion of neighboring endothelial cells.
    Blood 12/2011; 119(6):1607-16. · 9.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylases (HDACs) deacetylate histones and non-histone proteins, thereby affecting protein activity and gene expression. The regulation and function of the cytoplasmic class IIb HDAC6 in endothelial cells (ECs) is largely unexplored. Here, we demonstrate that HDAC6 is upregulated by hypoxia and is essential for angiogenesis. Silencing of HDAC6 in ECs decreases sprouting and migration in vitro and formation of functional vascular networks in matrigel plugs in vivo. HDAC6 regulates zebrafish vessel formation, and HDAC6-deficient mice showed a reduced formation of perfused vessels in matrigel plugs. Consistently, overexpression of wild-type HDAC6 increases sprouting from spheroids. HDAC6 function requires the catalytic activity but is independent of ubiquitin binding and deacetylation of α-tubulin. Instead, we found that HDAC6 interacts with and deacetylates the actin-remodelling protein cortactin in ECs, which is essential for zebrafish vessel formation and which mediates the angiogenic effect of HDAC6. In summary, we show that HDAC6 is necessary for angiogenesis in vivo and in vitro, involving the interaction and deacetylation of cortactin that regulates EC migration and sprouting.
    The EMBO Journal 08/2011; 30(20):4142-56. · 9.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor HOXC9 belongs to the homeobox gene family acting as developmental morphogen in several species. HOXC9 is EXPRESSED in different vascular beds in vivo. Yet vascular functions of HOXC9 have not been studied. This study was aimed at characterizing HOXC9 functions in human vascular endothelial cells and in zebrafish vascular development. HOXC9 was abundantly expressed in resting human umbilical vein endothelial cells and was downregulated by hypoxia. Overexpression of HOXC9 inhibited endothelial cell proliferation, migration, and tube formation in vitro. Expression profiling and chromatin immunoprecipitation experiments in human umbilical vein endothelial cells identified interleukin 8 as the major HOXC9 target and demonstrated the direct binding of HOXC9 to the interleukin 8 promotor. HOXC9 overexpression led to reduced endothelial interleukin 8 production, whereas HOXC9 silencing increased interleukin 8. The antimigratory and antiangiogenic effect of HOXC9 overexpression could be rescued by external interleukin 8 administration. Corresponding to the cellular experiments, endothelial-specific overexpression of HOXC9 and morpholino-based interleukin 8 loss-of-function experiments inhibited zebrafish vascular development. The data identify HOXC9 as an endothelial cell active transcriptional repressor promoting the resting, antiangiogenic endothelial cell phenotype in an interleukin 8-dependent manner.
    Circulation Research 05/2011; 108(11):1367-77. · 11.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis is regulated by the small GTPase Rac1. The ELMO1/DOCK180 complex forms a guanine nucleotide exchange factor for Rac1, regulating its activation during cell migration in different biological systems. Objective: To investigate the function of ELMO1/DOCK180 in vascular development. In situ hybridization studies for elmo1 identified a vascular and neuronal expression in zebrafish. Morpholino-based expression silencing of elmo1 severely impaired the formation of the vasculature, including intersomitic vessels, the dorsal longitudinal anastomotic vessel, the parachordal vessel, and the development of the thoracic duct in tg(fli1:EGFP) embryos. Mechanistically, we identified Netrin-1 and its receptor Unc5B as upstream activators of the ELMO1/DOCK180 complex, regulating its functional interaction and leading to Rac1 activation in endothelial cells and vessel formation in zebrafish. Our data have identified a novel signaling cascade regulating vasculature formation in zebrafish.
    Circulation Research 05/2010; 107(1):45-55. · 11.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we have shown that Wnt2 is an autocrine growth and differentiation factor for hepatic sinusoidal endothelial cells. As Wnt signaling has become increasingly important in vascular development and cancer, we analyzed Wnt signaling in non-sinusoidal endothelial cells of different vascular origin (HUVEC, HUAEC, HMVEC-LLy). Upon screening the multiple components of the Wnt pathway, we demonstrated lack of Wnt2 expression, but presence of Frizzled-4, one of its receptors, in cultured non-sinusoidal endothelial cells. Treatment of these cells by exogenous Wnt2 induced endothelial proliferation and sprouting angiogenesis in vitro. Upon analysis of Wnt2 tissue expression as a basis for paracrine Wnt2 effects on non-sinusoidal endothelial cells in vivo, Wnt2 was found to be expressed in densely vascularized murine malignant tumors and in wound healing tissues in close proximity to CD31+ endothelial cells. By gene profiling, stanniocalcin-1 (STC1), a known regulator of angiogenesis, was identified as a target gene of Wnt2 signaling in HUVEC down-regulated by Wnt2 treatment. Tumor-conditioned media counter-acted Wnt2 and up-regulated STC1 expression in HUVEC. In conclusion, we provide evidence that Wnt2 acts as an angiogenic factor for non-sinusoidal endothelium in vitro and in vivo whose target genes undergo complex regulation by the tissue microenvironment.
    Angiogenesis 06/2009; 12(3):251-65. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) is an endothelial-specific growth factor that activates the small GTPase RhoA. While the role of RhoA for VEGF-driven endothelial migration and angiogenesis has been studied in detail, the function of its target proteins, the Rho-dependent kinases ROCK I and II, are controversially discussed. Using the mouse model of oxygen-induced proliferative retinopathy, ROCK I/II inhibition by H-1152 resulted in increased angiogenesis. This enhanced angiogenesis, however, was completely blocked by the VEGF-receptor antagonist PTK787/ZK222584. Loss-of-function experiments in endothelial cells revealed that inhibition of ROCK I/II using the pharmacological inhibitor H-1152 and ROCK I/II-specific small-interfering RNAs resulted in a rise of VEGF-driven sprouting angiogenesis. These functional data were biochemically substantiated by showing an enhanced VEGF-receptor kinase insert domain receptor phosphorylation and extracellular signal-regulated kinase 1/2 activation after inhibition of ROCK I/II. Thus our data identify that the inhibition of Rho-dependent kinases ROCK I/II activates angiogenesis both, in vitro and in vivo.
    AJP Heart and Circulatory Physiology 02/2009; 296(3):H893-9. · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms regulating the growth and differentiation of hepatic sinusoidal endothelial cells (HSECs) are not well defined. Because Wnt signaling has become increasingly important in developmental processes such as vascular and hepatic differentiation, we analyzed HSEC-specific Wnt signaling in detail. Using highly pure HSECs isolated by a newly developed protocol selecting against nonsinusoidal hepatic endothelial cells, we comparatively screened the multiple components of the Wnt pathway for differential expression in HSECs and lung microvascular endothelial cells (LMECs) via reverse-transcription polymerase chain reaction (RT-PCR). As confirmed via quantitative RT-PCR and northern and western blotting experiments, Wnt2 (and less so Wnt transporter wls/evi) and Wnt coreceptor Ryk were overexpressed by HSECs, whereas Wnt inhibitory factor (WIF) was strongly overexpressed by LMECs. Exogenous Wnt2 superinduced proliferation of HSECs (P < 0.05). The Wnt inhibitor secreted frizzled-related protein 1 (sFRP1) (P < 0.005) and transfection of HSECs with Wnt2 small interfering RNA (siRNA) reduced proliferation of HSECs. These effects were rescued by exogenous Wnt2. Tube formation of HSECs on matrigel was strongly inhibited by Wnt inhibitors sFRP1 and WIF (P < 0.0005). Wnt signaling in HSECs activated the canonical pathway inducing nuclear translocation of beta-catenin. GST (glutathione transferase) pull-down and co-immunoprecipitation assays showed Fzd4 to be a novel Wnt2 receptor in HSECs. Gene profiling identified vascular endothelial growth factor receptor-2 (VEGFR-2) as a target of Wnt2 signaling in HSECs. Inhibition of Wnt signaling down-regulated VEGFR-2 messenger RNA and protein. Wnt2 siRNA knock-down confirmed Wnt2 specificity of VEGFR-2 regulation in HSECs. CONCLUSION: Wnt2 is an autocrine growth and differentiation factor specific for HSECs that synergizes with the VEGF signaling pathway to exert its effects.
    Hepatology 04/2008; 47(3):1018-31. · 12.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sprouting and invasive migration of endothelial cells are important steps of the angiogenic cascade. Vascular endothelial growth factor (VEGF) induces angiogenesis by activating intracellular signal transduction cascades, which regulate endothelial cell morphology and function. BTB-kelch proteins are intracellular proteins that control cellular architecture and cellular functions. The BTB-kelch protein KLEIP has been characterized as an actin-binding protein that interacts with the nucleotide exchange factor ECT2. We report that KLEIP is preferentially expressed in endothelial cells, suggesting that it may play a critical role in controlling the functions of migrating, proliferating, and invading endothelial cells during angiogenesis. KLEIP mRNA level in endothelial cells is strongly regulated by hypoxia which is controlled by hypoxia-inducible factor-1alpha. Functional analysis of KLEIP in endothelial cells revealed that it acts as an essential downstream regulator of VEGF- and basic fibroblast growth factor-induced migration and in-gel sprouting angiogenesis. Yet, it is not involved in controlling VEGF- or basic fibroblast growth factor-mediated proliferative responses. The depletion of KLEIP in endothelial cells blunted the VEGF-induced activation of the monomeric GTPase RhoA but did not alter the VEGF-stimulated activation of extracellular signal-regulated kinase 1/2. Moreover, VEGF induced a physical association of KLEIP with the guanine nucleotide-exchange factor ECT2, the depletion of which also blunted VEGF-induced sprouting. We conclude that the BTB-kelch protein KLEIP is a novel regulator of endothelial function during angiogenesis that controls the VEGF-induced activation of Rho GTPases.
    Circulation Research 04/2007; 100(8):1155-63. · 11.86 Impact Factor

Publication Stats

1k Citations
205.25 Total Impact Points

Institutions

  • 2013
    • Martin Luther University of Halle-Wittenberg
      Halle-on-the-Saale, Saxony-Anhalt, Germany
  • 2011–2013
    • Universität Heidelberg
      • • Center for Biomedicine and Medical Technology Mannheim
      • • Faculty of Medicine Mannheim and Clinic Mannheim
      Heidelberg, Baden-Wuerttemberg, Germany
  • 2009–2011
    • Deutsches Krebsforschungszentrum
      • • Division of Vascular Oncology and Metastasis
      • • Division of Molecular Immunology
      Heidelburg, Baden-Württemberg, Germany
  • 2007
    • Clinic for Tumor Biology Freiburg
      Freiburg, Baden-Württemberg, Germany
  • 1998–1999
    • Universität Ulm
      • Clinic of Internal Medicine II
      Ulm, Baden-Wuerttemberg, Germany