Takuji Iwasato

National Institute of Genetics, Мисима, Shizuoka, Japan

Are you Takuji Iwasato?

Claim your profile

Publications (43)276.08 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The function of mature neurons critically relies on the developmental outgrowth and projection of their cellular processes. It has long been postulated that the neuronal glycoproteins M6a and M6b are involved in axon growth because these four-transmembrane domain-proteins of the proteolipid protein family are highly enriched on growth cones, but in vivo evidence has been lacking. Here, we report that the function of M6 proteins is required for normal axonal extension and guidance in vivo. In mice lacking both M6a and M6b, a severe hypoplasia of axon tracts was manifested. Most strikingly, the corpus callosum was reduced in thickness despite normal densities of cortical projection neurons. In single neuron tracing, many axons appeared shorter and disorganized in the double-mutant cortex, and some of them were even misdirected laterally toward the subcortex. Probst bundles were not observed. Upon culturing, double-mutant cortical and cerebellar neurons displayed impaired neurite outgrowth, indicating a cell-intrinsic function of M6 proteins. A rescue experiment showed that the intracellular loop of M6a is essential for the support of neurite extension. We propose that M6 proteins are required for proper extension and guidance of callosal axons that follow one of the most complex trajectories in the mammalian nervous system.
    Cerebral cortex (New York, N.Y. : 1991). 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thalamocortical (TC) connectivity is reorganized by thalamic inputs during postnatal development; however, the dynamic characteristics of TC reorganization and the underlying mechanisms remain unexplored. We addressed this question using dendritic refinement of layer 4 (L4) stellate neurons in mouse barrel cortex (barrel cells) as a model; dendritic refinement of L4 neurons is a critical component of TC reorganization through which postsynaptic L4 neurons acquire their dendritic orientation toward presynaptic TC axon termini. Simultaneous labeling of TC axons and individual barrel cell dendrites allowed in vivo time-lapse imaging of dendritic refinement in the neonatal cortex. The barrel cells reinforced the dendritic orientation toward TC axons by dynamically moving their branches. In N-methyl-D-aspartate receptor (NMDAR)-deficient barrel cells, this dendritic motility was enhanced, and the orientation bias was not reinforced. Our data suggest that L4 neurons have "fluctuating" dendrites during TC reorganization and that NMDARs cell autonomously regulate these dynamics to establish fine-tuned circuits.
    Neuron 03/2014; · 15.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EphA4 signaling is essential for the spatiotemporal organization of neuronal circuit formation. In mice, deletion of this signaling pathway causes aberrant midline crossing of axons from both brain and spinal neurons and the complete knock-outs (KOs) exhibit a pronounced change in motor behavior, where alternating gaits are replaced by a rabbit-like hopping gait. The neuronal mechanism that is responsible for the gait switch in these KO mice is not known. Here, using intersectional genetics, we demonstrate that a spinal cord-specific deletion of EphA4 signaling is sufficient to generate the overground hopping gait. In contrast, selective deletion of EphA4 signaling in forebrain neurons, including the corticospinal tract neurons, did not result in a change in locomotor pattern. The gait switch was attributed to the loss of EphA4 signaling in excitatory Vglut2(+) neurons, which is accompanied by an increased midline crossing of Vglut2(+) neurons in the ventral spinal cord. Our findings functionally define spinal EphA4 signaling in excitatory Vglut2(+) neurons as required for proper organization of the spinal locomotor circuitry, and place these cells as essential components of the mammalian locomotor network.
    Journal of Neuroscience 03/2014; 34(11):3841-53. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major concern in neuroscience is how cognitive ability in adulthood is affected and regulated by developmental mechanisms. The molecular bases of cognitive development are not well understood. We provide evidence for the involvement of the α2 isoform of Rac-specific guanosine triphosphatase (GTPase)-activating protein (RacGAP) α-chimaerin (chimerin) in this process. We generated and analyzed mice with global and conditional knockouts of α-chimaerin and its isoforms (α1-chimaerin and α2-chimaerin) and found that α-chimaerin plays a wide variety of roles in brain function and that the roles of α1-chimaerin and α2-chimaerin are distinct. Deletion of α2-chimaerin, but not α1-chimaerin, beginning during early development results in an increase in contextual fear learning in adult mice, whereas learning is not altered when α2-chimaerin is deleted only in adulthood. Our findings suggest that α2-chimaerin acts during development to establish normal cognitive ability in adulthood.
    Cell reports. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+)-dependent activator protein for secretion 1 (CAPS1) plays a regulatory role in the dense-core vesicle (DCV) exocytosis pathway, but its functions at the cellular and synaptic levels in the brain are essentially unknown because of neonatal death soon after birth in Caps1 knock-out mice. To clarify the functions of the protein in the brain, we generated two conditional knock-out (cKO) mouse lines: 1) one lacking Caps1 in the forebrain; and 2) the other lacking Caps1 in the cerebellum. Both cKO mouse lines were born normally and grew to adulthood, although they showed subcellular and synaptic abnormalities. Forebrain-specific Caps1 cKO mice showed reduced immunoreactivity for the DCV marker secretogranin II (SgII) and the trans-Golgi network (TGN) marker syntaxin 6, a reduced number of presynaptic DCVs, and dilated trans-Golgi cisternae in the CA3 region. Cerebellum-specific Caps1 cKO mice had decreased immunoreactivity for SgII and brain-derived neurotrophic factor (BDNF) along the climbing fibers. At climbing fiber-Purkinje cell synapses, the number of DCVs was markedly lower and the number of synaptic vesicles was also reduced. Correspondingly, the mean amplitude of EPSCs was decreased, whereas paired-pulse depression was significantly increased. Our results suggest that loss of CAPS1 disrupts the TGN-DCV pathway, which possibly impairs synaptic transmission by reducing the presynaptic release probability.
    Journal of Neuroscience 10/2013; 33(44):17326-34. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dravet syndrome is a severe epileptic encephalopathy mainly caused by heterozygous mutations in the SCN1A gene encoding a voltage-gated sodium channel Nav1.1. We previously reported dense localization of Nav1.1 in parvalbumin (PV)-positive inhibitory interneurons in mice and abnormal firing of those neurons in Nav1.1-deficient mice. In the present study, we investigated the physiologic consequence of selective Nav1.1 deletion in mouse global inhibitory neurons, forebrain excitatory neurons or PV cells, using vesicular GABA transporter (VGAT)-Cre, empty spiracles homolog 1 (Emx1)-Cre or PV-Cre recombinase drivers. We show that selective Nav1.1 deletion using VGAT-Cre causes epileptic seizures and premature death that are unexpectedly more severe than those observed in constitutive Nav1.1-deficient mice. Nav1.1 deletion using Emx1-Cre does not cause any noticeable abnormalities in mice; however, the severe lethality observed with VGAT-Cre-driven Nav1.1 deletion is rescued by additional Nav1.1 deletion using Emx1-Cre. In addition to predominant expression in PV interneurons, we detected Nav1.1 in subpopulations of excitatory neurons, including entorhino-hippocampal projection neurons, a subpopulation of neocortical layer V excitatory neurons, and thalamo-cortical projection neurons. We further show that even minimal selective Nav1.1 deletion, using PV-Cre, is sufficient to cause spontaneous epileptic seizures and ataxia in mice. Overall, our results indicate that functional impairment of PV inhibitory neurons with Nav1.1 haploinsufficiency contributes to the epileptic pathology of Dravet syndrome, and show for the first time that Nav1.1 haploinsufficiency in excitatory neurons has an ameliorating effect on the pathology.
    Human Molecular Genetics 08/2013; · 7.69 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural networks in the spinal cord known as central pattern generators produce the sequential activation of muscles needed for locomotion. The overall locomotor network architectures in limbed vertebrates have been much debated, and no consensus exists as to how they are structured. Here, we use optogenetics to dissect the excitatory and inhibitory neuronal populations and probe the organization of the mammalian central pattern generator. We find that locomotor-like rhythmic bursting can be induced unilaterally or independently in flexor or extensor networks. Furthermore, we show that individual flexor motor neuron pools can be recruited into bursting without any activity in other nearby flexor motor neuron pools. Our experiments differentiate among several proposed models for rhythm generation in the vertebrates and show that the basic structure underlying the locomotor network has a distributed organization with many intrinsically rhythmogenic modules.
    Proceedings of the National Academy of Sciences 06/2013; · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avulsion of spinal nerve roots in the brachial plexus (BP) can be repaired by crossing nerve transfer via a nerve graft to connect injured nerve ends to the BP contralateral to the lesioned side. Sensory recovery in these patients suggests that the contralateral primary somatosensory cortex (S1) is activated by afferent inputs that bypassed to the contralateral BP. To confirm this hypothesis, the present study visualized cortical activity after crossing nerve transfer in mice through the use of transcranial flavoprotein fluorescence imaging. In naïve mice, vibratory stimuli applied to the forepaw elicited localized fluorescence responses in the S1 contralateral to the stimulated side, with almost no activity in the ipsilateral S1. Four weeks after crossing nerve transfer, forepaw stimulation in the injured and repaired side resulted in cortical responses only in the S1 ipsilateral to the stimulated side. At eight weeks after crossing nerve transfer, forepaw stimulation resulted in S1 cortical responses of both hemispheres. These cortical responses were abolished by cutting the nerve graft used for repair. Exposure of the ipsilateral S1 to blue laser light suppressed cortical responses in the ipsilateral S1, as well as in the contralateral S1, suggesting that ipsilateral responses propagated to the contralateral S1 via cortico-cortical pathways. Direct high-frequency stimulation of the ipsilateral S1 in combination with forepaw stimulation acutely induced S1 bilateral cortical representation of the forepaw area in naïve mice. Cortical responses in the contralateral S1 after crossing nerve transfer were reduced in cortex-restricted heterotypic GluN1 (NMDAR1) knockout mice. Functional bilateral cortical representation was not clearly observed in genetically manipulated mice with impaired cortico-cortical pathways between S1 of both hemispheres. Taken together, these findings strongly suggest that activity-dependent potentiation of cortico-cortical pathways has a critical role for sensory recovery in patients after crossing nerve transfer.
    PLoS ONE 01/2012; 7(4):e35676. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of topographic maps of the sensory periphery is sensitive to the disruption of adenylate cyclase 1 (AC1) signaling. AC1 catalyzes the production of cAMP in a Ca2+/calmodulin-dependent manner, and AC1 mutant mice (AC1−/−) have disordered visual and somatotopic maps. However, the broad expression of AC1 in the brain and the promiscuous nature of cAMP signaling have frustrated attempts to determine the underlying mechanism of AC1-dependent map development. In the mammalian visual system, the initial coarse targeting of retinal ganglion cell (RGC) projections to the superior colliculus (SC) and lateral geniculate nucleus (LGN) is guided by molecular cues, and the subsequent refinement of these crude projections occurs via an activity-dependent process that depends on spontaneous retinal waves. Here, we show that AC1−/− mice have normal retinal waves but disrupted map refinement. We demonstrate that AC1 is required for the emergence of dense and focused termination zones and elimination of inaccurately targeted collaterals at the level of individual retinofugal arbors. Conditional deletion of AC1 in the retina recapitulates map defects, indicating that the locus of map disruptions in the SC and dorsal LGN of AC1−/− mice is presynaptic. Finally, map defects in mice without AC1 and disrupted retinal waves (AC1−/−;β2−/− double KO mice) are no worse than those in mice lacking only β2−/−, but loss of AC1 occludes map recovery in β2−/− mice during the second postnatal week. These results suggest that AC1 in RGC axons mediates the development of retinotopy and eye-specific segregation in the SC and dorsal LGN.
    The Journal of Comparative Neurology 11/2011; 520(7):1562-83. · 3.66 Impact Factor
  • Neuroscience Research - NEUROSCI RES. 01/2011; 71.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify a novel regulatory factor involved in brain development or synaptic plasticity, we applied the differential display PCR method to mRNA samples from NMDA-stimulated and un-stimulated neocortical cultures. Among 64 cDNA clones isolated, eight clones were novel genes and one of them encodes a novel zinc-finger protein, HIT-4, which is 317 amino acid residues (36-38 kDa) in length and contains seven C2H2 zinc-finger motifs. Rat HIT-4 cDNA exhibits strong homology to human ZNF597 (57% amino acid identity and 72% homology) and identity to rat ZNF597 at the carboxyl region. Furthermore, genomic alignment of HIT-4 cDNA indicates that the alternative use of distinct promoters and exons produces HIT-4 and ZNF597 mRNAs. Northern blotting revealed that HIT-4 mRNA (approximately 6 kb) is expressed in various tissues such as the lung, heart, and liver, but enriched in the brain, while ZNF597 mRNA (approximately 1.5 kb) is found only in the testis. To evaluate biological roles of HIT-4/ZNF597, targeted mutagenesis of this gene was performed in mice. Homozygous (-/-) mutation was embryonic lethal, ceasing embryonic organization before cardiogenesis at embryonic day 7.5. Heterozygous (+/-) mice were able to survive but showing cell degeneration and vacuolization of the striatum, cingulate cortex, and their surrounding white matter. These results reveal novel biological and pathological roles of HIT-4 in brain development and/or maintenance.
    Journal of Neurochemistry 12/2009; 112(4):1035-44. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ephrins and Eph receptors have key roles in regulation of cell migration during development. We found that the RacGAP beta2-chimaerin (chimerin) bound to EphA2 and EphA4 and inactivated Rac1 in response to ephrinA1 stimulation. EphA4 bound to beta2-chimaerin through its kinase domain and promoted binding of Rac1 to beta2-chimaerin. In addition, knockdown of endogenous beta2-chimaerin blocked ephrinA1-induced suppression of cell migration. These results suggest that beta2-chimaerin is activated by EphA receptors and mediates the EphA receptor-dependent regulation of cell migration.
    FEBS letters 04/2009; 583(8):1237-42. · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-d-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remain to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 downregulation in the brain on behavior and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated excitatory postsynaptic currents (EPSC) was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated.
    Neuroscience 04/2009; 161(2):635-54. · 3.12 Impact Factor
  • Nobuhiko Yamamoto, Takuji Iwasato
    Neuroscience Research - NEUROSCI RES. 01/2009; 65.
  • Neuroscience Research - NEUROSCI RES. 01/2009; 65.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone morphogenetic protein (BMP) signaling is involved in differentiation of neural precursor cells into astrocytes, but its contribution to angiogenesis is not well characterized. This study examines the role of BMP signaling through BMP type IA receptor (BMPRIA) in early neural development using a conditional knockout mouse model, in which Bmpr1a is selectively disrupted in telencephalic neural stem cells. The conditional mutant mice show a significant increase in the number of cerebral blood vessels and the level of vascular endothelial growth factor (VEGF) is significantly upregulated in the mutant astrocytes. The mutant mice also show leakage of immunoglobulin around cerebral microvessels in neonatal mice, suggesting a defect in formation of the blood-brain-barrier. In addition, astrocytic endfeet fail to encircle cortical blood vessels in the mutant mice. These results suggest that BMPRIA signaling in astrocytes regulates the expression of VEGF for proper cerebrovascular angiogenesis and has a role on in the formation of the blood-brain-barrier.
    Molecular and Cellular Neuroscience 08/2008; 38(3):417-30. · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental evidence from mutant or genetically altered mice indicates that the formation of barrels and the proper maturation of thalamocortical (TC) synapses in the primary somatosensory (barrel) cortex depend on mechanisms mediated by neural activity. Type 1 adenylyl cyclase (AC1), which catalyzes the formation of cAMP, is stimulated by increases in intracellular Ca(2+) levels in an activity-dependent manner. The AC1 mutant mouse, barrelless (brl), lacks typical barrel cytoarchitecture, and displays presynaptic and postsynaptic functional defects at TC synapses. However, because AC1 is expressed throughout the trigeminal pathway, the barrel cortex phenotype of brl mice may be a consequence of AC1 disruption in cortical or subcortical regions. To examine the role of cortical AC1 in the development of morphological barrels and TC synapses, we generated cortex-specific AC1 knock-out (CxAC1KO) mice. We found that neurons in layer IV form grossly normal barrels and TC axons fill barrel hollows in CxAC1KO mice. In addition, whisker lesion-induced critical period plasticity was not impaired in these mice. However, we found quantitative reductions in the quality of cortical barrel cytoarchitecture and dendritic asymmetry of layer IV barrel neurons in CxAC1KO mice. Electrophysiologically, CxAC1KO mice have deficits in the postsynaptic but not in the presynaptic maturation of TC synapses. These results suggest that activity-dependent postsynaptic AC1-cAMP signaling is required for functional maturation of TC synapses and the development of normal barrel cortex cytoarchitecture. They also suggest that the formation of the gross morphological features of barrels is independent of postsynaptic AC1 in the barrel cortex.
    Journal of Neuroscience 06/2008; 28(23):5931-43. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrogliosis is a pathological hallmark of the epileptic brain. The identification of mechanisms that link astrogliosis to neuronal dysfunction in epilepsy may provide new avenues for therapeutic intervention. Here we show that astrocyte-expressed adenosine kinase (ADK), a key negative regulator of the brain inhibitory molecule adenosine, is a potential predictor and modulator of epileptogenesis. In a mouse model of focal epileptogenesis, in which astrogliosis is restricted to the CA3 region of the hippocampus, we demonstrate that upregulation of ADK and spontaneous focal electroencephalographic seizures were both restricted to the affected CA3. Furthermore, spontaneous seizures in CA3 were mimicked in transgenic mice by overexpression of ADK in this brain region, implying that overexpression of ADK without astrogliosis is sufficient to cause seizures. Conversely, after pharmacological induction of an otherwise epileptogenesis-precipitating acute brain injury, transgenic mice with reduced forebrain ADK were resistant to subsequent epileptogenesis. Likewise, ADK-deficient ES cell-derived brain implants suppressed astrogliosis, upregulation of ADK, and spontaneous seizures in WT mice when implanted after the epileptogenesis-precipitating brain injury. Our findings suggest that astrocyte-based ADK provides a critical link between astrogliosis and neuronal dysfunction in epilepsy.
    Journal of Clinical Investigation 03/2008; 118(2):571-82. · 12.81 Impact Factor

Publication Stats

1k Citations
276.08 Total Impact Points

Institutions

  • 2009–2014
    • National Institute of Genetics
      • • Division of Neurogenetics
      • • Division of Developmental Genetics
      Мисима, Shizuoka, Japan
  • 2002–2005
    • Louisiana State University Health Sciences Center New Orleans
      • Cell Biology & Anatomy
      Baton Rouge, LA, United States
    • Japan Science and Technology Agency (JST)
      Edo, Tōkyō, Japan
  • 2000–2005
    • RIKEN
      • Laboratory for Behavioral Genetics
      Вако, Saitama, Japan
  • 1998
    • Massachusetts Institute of Technology
      • Department of Biology
      Cambridge, Massachusetts, United States