Sudipa Basu Chakrabarty

Saha Institute of Nuclear Physics, Calcutta, Bengal, India

Are you Sudipa Basu Chakrabarty?

Claim your profile

Publications (6)16.19 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of hemoglobin with phospholipid bilayer vesicles (liposomes) has been analyzed in several studies to better understand membrane-protein interactions. However, not much is known on hemoglobin interactions with the aminophospholipids, predominantly localized in the inner leaflet of erythrocytes, e.g., phosphatidylserine (PS), phosphatidylethanolamine (PE) in membranes containing phosphatidylcholine (PC). Effects of cholesterol, largely abundant in erythrocytes, have also not been studied in great details in earlier studies. This work therefore describes the study of the interactions of different hemoglobin variants HbA, HbE and HbF and the globin subunits of HbA with the two aminophospholipids in the presence and absence of cholesterol. Absorption measurements indicate preferential oxidative interaction of HbE and alpha-globin subunit with unilamellar vesicles containing PE and PS compared to normal HbA. Cholesterol was found to stabilize such oxidative interactions in membranes containing both the aminophospholipids. HbE and alpha-globin subunits were also found to induce greater leakage of membrane entrapped carboxyfluorescein (CF) using fluorescence measurements. HbE was found to induce fusion of membrane vesicles containing cholesterol and PE when observed under electron microscope. Taken together, these findings might be helpful in understanding the oxidative stress-related mechanism(s) involved in the premature destruction of erythrocytes in peripheral blood, implicated in the hemoglobin disorder, HbE/beta-thalassemia.
    Biochimica et Biophysica Acta 02/2008; 1778(1):1-9. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several homeopathic remedies, namely, Pulsatilla Nigricans (30th potency), Ceanothus Americanus (both mother tincture and 6th potency) and Ferrum Metallicum (30th potency) selected as per similia principles were administered to 38 thalassemic patients receiving Hydroxyurea (HU) therapy for a varying period of time. Levels of serum ferritin (SF), fetal hemoglobin (HbF), hemoglobin (Hb), platelet count (PC), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular hemoglobin (MCH), white blood cell (WBC) count, bilirubin content, alanine amino transferase (ALT), aspartate amino transferase (AST) and serum total protein content of patients were determined before and 3 months after administration of the homeopathic remedies in combination with HU to evaluate additional benefits, if any, derived by the homeopathic remedies, by comparing the data with those of 38 subjects receiving only HU therapy. Preliminary results indicated that there was a significant decrease in the SF and increase in HbF levels in the combined, treated subjects. Although the changes in other parameters were not so significant, there was a significant decrease in size of spleen in most patients with spleenomegaly and improvement in general health conditions along with an increased gap between transfusions in most patients receiving the combined homeopathic treatment. The homeopathic remedies being inexpensive and without any known side-effects seem to have great potentials in bringing additional benefits to thalassemic patients; particularly in the developing world where blood transfusions suffer from inadequate screening and fall short of the stringent safety standards followed in the developed countries. Further independent studies are encouraged.
    Evidence-based Complementary and Alternative Medicine 11/2007; 7(1):129-36. · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have shown the differential interactions of the erythroid skeletal protein spectrin with the globin subunits of adult haemoglobin (HbA); these indicate a preference for alpha-globin over that for beta-globin and intact HbA in an adenosine 5'-triphosphate (ATP)-dependent manner. The presence of Mg/ATP led to an appreciable decrease in the binding affinity of the alpha-globin chain to spectrin and the overall yield of globin-spectrin cross-linked complexes formed in the presence of hydrogen peroxide. Similar effects were also seen in the presence of 2-,3-diphosphoglycerate (2,3 DPG), the other important phosphate metabolite of erythrocytes. The binding affinity and yield of cross-linked high molecular weight complexes (HMWCs) formed under oxidative conditions were significantly higher in alpha-globin compared with intact haemoglobin, HbA and the beta-globin chain. The results of this study indicate a possible correlation of the preferential spectrin binding of the alpha-globin chain over that of the beta-globin in the haemoglobin disorder beta-thalassaemia.
    Journal of Biosciences 10/2007; 32(6):1147-51. · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemoglobin A(2) (alpha(2)delta(2)) is an important hemoglobin variant which is a minor component (2-3%) in the circulating red blood cells, and its elevated concentration in beta-thalassemia is a useful clinical diagnostic. In beta-thalassemia major, where there is beta-chain production failure, HbA(2) acts as the predominant oxygen deliverer. HbA(2) has two more important features. (1) It is more resistant to thermal denaturation than HbA, and (2) it inhibits the polymerization of deoxy sickle hemoglobin (HbS). Hemoglobin E (E26K(beta)), formed as a result of the splice site mutation on exon 1 of the beta-globin gene, is another important hemoglobin variant which is known to be unstable at high temperatures. Both heterozygous HbE (HbAE) and homozygous HbE (HbEE) are benign disorders, but when HbE combines with beta-thalassemia, it causes E/beta-thalassemia which has severe clinical consequences. In this paper, we present the crystal structures of HbA(2) and HbE at 2.20 and 1.74 A resolution, respectively, in their R2 states, which have been used here to provide the probable explanations of the thermal stability and instability of HbA(2) and HbE. Using the coordinates of R2 state HbA(2), we modeled the structure of T state HbA(2) which allowed us to address the structural basis of the antisickling property of HbA(2). Using the coordinates of the delta-chain of HbA(2) (R2 state), we also modeled the structure of hemoglobin homotetramer delta(4) that occurs in the case of rare HbH disease. From the differences in intersubunit contacts among beta(4), gamma(4), and delta(4), we formed a hypothesis regarding the possible tetramerization pathway of delta(4). The crystal structure of a ferrocyanide-bound HbA(2) at 1.88 A resolution is also presented here, which throws light on the location and the mode of binding of ferrocyanide anion with hemoglobin, predominantly using the residues involved in DPG binding. The pH dependence of ferrocyanide binding with hemoglobin has also been investigated.
    Biochemistry 11/2004; 43(39):12477-88. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hemoglobin A(2) (alpha(2)delta(2)), a minor (2-3%) component of circulating red blood cells, acts as an anti-sickling agent and its elevated concentration in beta-thalassemia is a useful clinical diagnostic. In beta-thalassemia major, where there is a failure of beta-chain production, HbA(2) acts as the predominant oxygen delivery mechanism. Hemoglobin E, is another common abnormal hemoglobin, caused by splice site mutation in exon 1 of beta globin gene, when combines with beta-thalassemia, causes severe microcytic anemia. The purification, crystallization, and preliminary structural studies of HbA(2) and HbE are reported here. HbA(2) and HbE are purified by cation exchange column chromatography in presence of KCN from the blood samples of individuals suffering from beta-thalassemia minor and E beta-thalassemia. X-ray diffraction data of HbA(2) and HbE were collected upto 2.1 and 1.73 A, respectively. HbA(2) crystallized in space group P2(1) with unit cell parameters a=54.33 A, b=83.73 A, c=62.87 A, and beta=99.80 degrees whereas HbE crystallized in space group P2(1)2(1)2(1) with unit cell parameters a=60.89 A, b=95.81 A, and c=99.08 A. Asymmetric unit in each case contains one Hb tetramer in R(2) state.
    Biochemical and Biophysical Research Communications 05/2003; 303(2):619-23. · 2.41 Impact Factor
  • Poppy Datta, Sudipa Basu Chakrabarty, Amit Chakrabarty, Abhijit Chakrabarti
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the few studies, producing contradictory results, done on the interaction of erythroid membrane skeletal spectrin with hemoglobin (Hb), none has been able to provide a quantitative estimate of the association of spectrin with Hb. In this work, studies on the interactions of erythroid spectrin with Hb have been elaborated upon using a novel fluorescence technique. The concentration-dependent change in the fluorescence intensity of fluorescein-conjugated spectrin (F-spectrin) in presence of oxy-Hb indicated binding with a dissociation constant of approximately 20 microM that has been directly evaluated from the increase in the extent of quenching of the fluorescein fluorescence of F-spectrin by reverse titration with the increasing concentrations of different Hb samples isolated from both normal and beta-thalassemic patients. The Hb compositions, with major components of the normal HbA, the fetal HbF, and the variant HbA2, of each individual were estimated using the Variant HPLC device of Bio-Rad. Results of the present study indicated that the dissociation constant, K(d), of spectrin binding to Hb decreased from 19.5 +/- 2 microM in normal individuals to of 6.5 +/- 0.5 microM in the presence of 73% HbA2 along with coeluted variants in the blood samples of patients suffering from beta-thalassemia, indicating differential interactions of the Hb variants with spectrin.
    Blood Cells Molecules and Diseases 01/2003; 30(3):248-53. · 2.26 Impact Factor