Yi-Chin Fong

China Medical University Hospital, 臺中市, Taiwan, Taiwan

Are you Yi-Chin Fong?

Claim your profile

Publications (90)292.94 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway.
    Oncotarget 09/2014; · 6.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma, a primary malignant bone cancer, has a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with it have poor prognosis. Naringin, polymethoxylated flavonoid commonly found in citrus fruits, has anti-oxidant, anti-inflammatory and anti-tumor activity; whether naringin regulates migration of chondrosarcoma is largely unknown. Here we report that naringin does not expedite apoptosis in human chondrosarcoma. By contrast, at noncytotoxic concentrations, naringin suppressed migration and invasion of chondrosarcoma cells. Vascular cell adhesion molecule-1 (VCAM-1) of the immunoglobulin superfamily is linked with metastasis; we found incubation of chondrosarcoma cells with naringin reducing mRNA transcription for, and cell surface expression of, VCAM-1. We also observed that naringin enhancing miR-126 expression, and miR-126 inhibitor reversed the naringin-inhibited cell motility and VCAM-1 expression. Therefore, naringin inhibits migration and invasion of human chondrosarcoma via down-regulation of VCAM-1 by increasing miR-126. Thus, naringin may be a novel anti-migration agent for the treatment of migration in chondrosarcoma.
    International Immunopharmacology. 09/2014; 22(1):107–114.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma, a primary malignant bone cancer, has a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with it have poor prognosis. Naringin, polymethoxylated flavonoid commonly found in citrus fruits, has anti-oxidant, anti-inflammatory and anti-tumor activity; whether naringin regulates migration of chondrosarcoma is largely unknown. Here we report that naringin does not expedite apoptosis in human chondrosarcoma. By contrast, at noncytotoxic concentrations, naringin suppressed migration and invasion of chondrosarcoma cells. Vascular cell adhesion molecule-1 (VCAM-1) of the immunoglobulin superfamily is linked with metastasis; we found incubation of chondrosarcoma cells with naringin reducing mRNA transcription for, and cell surface expression of, VCAM-1. We also observed that naringin enhancing miR-126 expression, and miR-126 inhibitor reversed the naringin-inhibited cell motility and VCAM-1 expression. Therefore, naringin inhibits migration and invasion of human chondrosarcoma via down-regulation of VCAM-1 by increasing miR-126. Thus, naringin may be a novel anti-migration agent for the treatment of migration in chondrosarcoma.
    International immunopharmacology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteosarcoma, the most common primary malignant bone tumor, shows potent capacity for local invasion and distant metastasis. Connective tissue growth factor (CTGF/CCN2), a secreted protein, binds to integrins, modulates invasive behavior of certain human cancer cells. Effect of CTGF in metastasis of human osteosarcoma is unknown. We found overexpression of CTGF increasing matrix metalloproteinases (MMPs)-2 and MMP-3 expression as well as promoting cell migration. MicroRNA (miRNA) analysis of CTGF-overexpressed osteosarcoma versus control cells probed mechanisms of CTGF-mediated promotion of migration. Among miRNAs regulated by CTGF, miR-519d was most downregulated after CTGF treatment. Co-transfection with miR-519d mimic reversed CTGF-mediated MMPs expression and cell migration. Also, MEK and ERK inhibitors or mutants reduced CTGF-increased cell migration and miR-519d suppression. By contrast, knockdown of CTGF diminished lung metastasis in vivo. Clinical samples indicate CTGF expression as linked with clinical stage and tumor metastasis. Taken together, data show CTGF elevating MMPs expression and subsequently promoting tumor metastasis in human osteosarcoma, down-regulating miR-519d via MEK and ERK pathways, making CTGF a new molecular therapeutic target in osteosarcoma metastasis.
    Oncotarget 06/2014; 5(11):3800-3812. · 6.64 Impact Factor
  • Chen-Ming Su, Yi-Chin Fong, Chih-Hsin Tang
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Chondrosarcoma is the most common primary bone tumor. It is difficult to diagnose as it is a rare, greatly diverse, complex and distinct disease, and it responds poorly to both chemotherapy and radiation treatment. For now, the ideal treatment for low-grade chondrosarcoma can be intralesional curettage, and additional radiotherapy or chemotherapy would be severe overtreatment. However, many recent studies have focused on the development of new anticancer strategies or chemotherapeutic agents derived from naturally comestible resources such as terrestrial herbs, new compounds and molecular targeting proteins for the treatment of chondrosarcoma. Areas covered: In this review, an overview of current treatment options is given, including new compounds targeting to hedgehog, Bcl-2 inhibition, targeting to mammalian target of rapamycin (mTOR) and Src inhibition; alternative medicines like benzimidazole, phloroglucinol and trichodermin derivatives; herbal medicines such as epigallocatechin-3-gallate, berberine and curcumin; cytogenetic approaches, including isocitrate dehydrogenase 1/2 and lysine-specific demethylase 1; and related therapeutic target proteins, which have the potential to improve treatment of patients with chondrosarcoma. Expert opinion: The most promising approach for the treatment of human chondrosarcoma that is currently available includes a combination of experimental therapeutic options and sufficient surgical resection. Fortunately, many recent studies regarding tumor angiogenesis are providing new important information about chondrosarcoma therapies, and for this reason, we believe that a novel and effective therapy will be developed in the near future.
    Expert Opinion on Orphan Drugs. 02/2014; 2(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma.
    Biochemical Pharmacology. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory response and articular destruction are common symptoms of osteoarthritis (OA) and rheumatoid arthritis (RA). Leptin, an adipocyte-secreted hormone that centrally regulates weight control, may exert proinflammatory effects in the joint, depending on the immune response. Yet, the mechanism of leptin interacting with the arthritic inflammatory response is unclear. This study finds that leptin increased expression of oncostatin M (OSM) in human osteoblasts in a concentration- and time-dependent manner. In addition, OBRl, but not OBRs receptor antisense oligonucleotide, abolished the leptin-mediated increase of OSM expression. On the other hand, leptin inhibited miR-93 expression; an miR-93 mimic reversed leptin-increased OSM expression. Stimulation of osteoblasts with leptin promoted Akt phosphorylation, while pretreatment of cells with Akt inhibitor or siRNA reversed leptin-inhibited miR-93 expression. Our results showed that leptin heightened OSM expression by downregulating miR-93 through the Akt signaling pathway in osteoblasts, suggesting leptin as a novel target in arthritis treatment.
    International Journal of Molecular Sciences 01/2014; 15(9):15778-15790. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Si-Wu-Tang (SWT), a Traditional Chinese Medicine (TCM) formula, is widely used for the treatment of gynopathies diseases such as menstrual discomfort, climacteric syndrome, dysmenorrhea, and other estrogen-related diseases. Recent studies have shown that SWT can treat primary dysmenorrhea, have anti-pruritic anti-inflammatory effects, and protect against radiation-induced bone marrow damage in an animal model. It has been reported that anti-inflammatory and anti-oxidant agents have the potential to treat osteoporosis by increasing bone formation and/or suppressing bone resorption. However, the effect of SWT on bone cell function has not yet been reported. Alkaline phosphatase (ALP), bone morphogenetic proteins (BMP)-2, and osteopontin (OPN) mRNA expression was analyzed by qPCR. The mechanism of action of SWT extract was investigated using western blotting. The in vivo anti-osteoporotic effect of SWT extract was assessed in ovariectomized mice. Here, we report that SWT increases ALP, BMP-2, and OPN expression as well as bone mineralization. In addition, we show that the PI3K, Akt, and NF-kappaB signaling pathways may be involved in the SWT-mediated increase in gene expression and bone mineralization. Notably, treatment of mice with SWT extract prevented bone loss induced by ovariectomy in vivo. SWT may be used to stimulate bone formation for the treatment of osteoporosis.
    BMC Complementary and Alternative Medicine 10/2013; 13(1):277. · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: WISP-1 is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, Nov) family of matrix cellular proteins. Osteosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effect of WISP-1 on migration activity in human osteosarcoma cells is mostly unknown. In this study, we first found that the expression of WISP-1 in osteosarcoma patients was significantly higher than that in normal bone and corrected with tumor stage. Exogenous treatment of osteosarcoma cells with WISP-1 promoted cell motility and matrix metalloproteinase (MMP)-2 and MMP-9 expression. In addition, the Ras and Raf-1 inhibitor or siRNA abolished WISP-1-induced cell migration and MMPs expression. On the other hand, activation of the Ras, Raf-1, MEK, ERK, and NF-κB signaling pathway after WISP-1 treatment was demonstrated, and WISP-1-induced expression of MMPs and migration activity were inhibited by the specific inhibitor, and mutant of MEK, ERK, and NF-κB cascades. Taken together, our results indicated that WISP-1 enhances the migration of osteosarcoma cells by increasing MMP-2 and MMP-9 expression through the integrin receptor, Ras, Raf-1, MEK, ERK, and NF-κB signal transduction pathway.
    Cellular Signalling 09/2013; · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Long-term alendronate therapy may lead to atypical femoral fractures in a very few patients. However, the management protocol to optimize fracture healing remains undetermined. The purpose of this study was to describe the time to union of atypical femoral fractures after surgical nailing in patients on long-term alendronate therapy, with continuation of alendronate or discontinuation of alendronate, and administration of bone-forming agents. FINDINGS: From January 2004 to December 2011, the records of patients at our institution on long-term alendronate therapy for more than 36 months and sustaining atypical femoral fractures that had undergone surgical nailing, with continuation of alendronate or discontinuation of alendronate and administration of bone-forming agents were reviewed.During the 8-year study period, we treated 10 atypical femoral fractures with surgical nailing in 7 consecutive osteopenic or osteoporotic patients on long-term alendronate therapy for more than 36 months. There were no post-operative complications or needs for revision surgery. All fractures achieved union during follow-up. Mean union time was 23.5 months (range, 18--31 months) for 6 fractures with continuation of alendronate after surgery, and 4.5 months (range, 4--5 months) for 4 fractures with discontinuation of alendronate and administration of bone-forming agents after surgery. CONCLUSIONS: Discontinuation of alendronate and administration of bone-forming agents after surgical nailing may promote union of atypical femoral fractures in patients on long-term alendronate therapy.
    BMC Research Notes 01/2013; 6(1):11.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptin, an adipocyte-secreted hormone that centrally regulates weight control, may exert proinflammatory effects in the joint, depending on the immune response. Leptin is abundantly expressed in osteoarthritis (OA) cartilage and synovium. However, the relationship between leptin and interleukin-6 (IL-6) in OA synovial fibroblasts (OASFs) remains obscure. Stimulation of OASFs with leptin induced IL-6 expression in a concentration- and time-dependent manner. OASFs expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. However, OBRl, but not OBRs, antisense oligonucleotide (AS-ODN) abolished the leptin-mediated increase of IL-6 expression. Transfection with insulin receptor substrate (IRS)-1 siRNA decreased leptin-induced IL-6 production. In addition, pretreatment of cells with PI3K, Akt, or AP-1 inhibitor also inhibited the potentiating action of leptin. Leptin-induced AP-1 activation was inhibited by OBRl, IRS-1, PI3K, or Akt inhibitors and siRNAs. Our results showed that leptin activates the OBRl receptor, which in turn activates IRS-1, PI3K, Akt, and AP-1 pathway, leading to up-regulation of IL-6 expression.
    PLoS ONE 01/2013; 8(9):e75551. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.
    PLoS ONE 01/2013; 8(7):e67990. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with chondrosarcoma have poor prognosis. Berberine, an active component of the Ranunculaceae and Papaveraceae families of plant, has been proven to induce tumor apoptosis and to prevent the metastasis of cancer cells. However, the effects of berberine in human chondrosarcoma are largely unknown. In this study, we found that berberine did not induce cell apoptosis in human primary chondrocytes and chondrosarcoma cells. However, at noncytotoxic concentrations, berberine reduced the migration and invasion of chondrosarcoma cancer cells. Integrins are the major adhesive molecules in mammalian cells and have been associated with the metastasis of cancer cells. We also found that incubation of chondrosarcoma cells with berberine reduced mRNA transcription for, and cell surface expression of, the α v β 3 integrin, with additional inhibitory effects on PKC δ , c-Src, and NF- κ B activation. Thus, berberine may be a novel antimetastasis agent for the treatment of metastatic chondrosarcoma.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:423164. · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.
    International Journal of Molecular Sciences 01/2013; 14(8):15459-78. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcomas are a heterogeneous group of malignant bone tumors that are characterized by the production of cartilaginous extracellular matrix. They are the second most frequently occurring type of bone malignancy. Surgical resection remains the primary mode of treatment for chondrosarcomas, since conventional chemotherapy and radiotherapy are largely ineffective. Treatment of patients with high-grade chondrosarcomas is particularly challenging, owing to the lack of effective adjuvant therapies. Integrins are cell surface adhesion molecules that regulate a variety of cellular functions. They have been implicated in the initiation, progression, and metastasis of solid tumors. Deregulation of integrin expression and/or signaling has been identified in many chondrosarcomas. Therefore, the development of new drugs that can selectively target regulators of integrin gene expression and ligand-integrin signaling might hold great promise for the treatment of these cancers. In this review, we provide an overview of the current understanding of how growth factors, chemokines/cytokines, and other inflammation-related molecules can control the expression of specific integrins to promote cell migration. We also review the roles of specific subtypes of integrins and their signaling mechanisms, and discuss how these might be involved in tumor growth and metastasis. Finally, novel therapeutic strategies for targeting these molecules will be discussed.
    BioMed research international. 01/2013; 2013:396839.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway.
    PLoS ONE 01/2013; 8(1):e53974. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator, and shows elevated levels in regions of severe injury and inflammatory diseases. CTGF is abundantly expressed in osteoarthritis (OA). Migration and infiltration of mononuclear cells to inflammatory sites are playing important role during OA pathogenesis. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is the key chemokine that regulates migration and infiltration of monocytes. However, the effect of CTGF on MCP-1 expression and monocyte migration are largely unknown. Our results showed that MCP-1 was highly expressed in OA synovial fibroblasts (OASFs) as compared to normal SFs. Directly apply OASFs with CTGF increased MCP-1 expression by concentration and time-dependent manner. CTGF mediated MCP-1 production was attenuated by αvβ5 integrin neutralized antibody. Pretreatment with focal adhesion kinase (FAK), MEK, AP-1, and NF-κB inhibitors also inhibited the potentiating action of CTGF. CTGF-mediated increase of NF-κB and AP-1 luciferase activity was inhibited by FAK, MEK, and ERK inhibitors or mutants. In vitro chemotaxis assay showed that OA synovial fluid and supernatants from CTGF treated OASFs increased migration of monocyte. In addition, CTGF-mediated migration was inhibited by the FAK and MEK inhibitor. Taken together, our results indicated that CTGF enhances the migration of monocyte cells by increasing MCP-1 expression through the αvβ5 integrin, FAK, MEK, ERK, and NF-κB/AP-1 signal transduction pathway.
    Biochimica et Biophysica Acta 12/2012; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effect of Cistanche deserticola Ma. (CD) on bone formation by cultured osteoblasts. The mineralized nodule formation assay was used to examine the in-vitro effects of CD on bone formation. Alkaline phosphatase (ALP), bone morphogenetic proteins (BMP)-2 and osteopontin (OPN) mRNA expression was analysed by quantitative real-time polymerase chain reaction. The mechanism of action of CD extract was investigated using Western blotting. The in-vivo anti-osteoporotic effect of CD extract was assessed in ovariectomized mice. CD extract had no effect on the proliferation, migration or wound healing of cultured osteoblasts, but increased ALP, BMP-2 and OPN mRNA and bone mineralization. Mitogen-activated protein kinase (MAPK) or nuclear factor (NF)-κB inhibitors reduced CD extract-induced bone formation and ALP, BMP-2 and OPN expression. However, CD extract did not affect osteoclastogenesis. In addition, CD extract prevented the bone loss induced by ovariectomy in vivo. CD may be a novel bone formation agent for the treatment of osteoporosis.
    The Journal of pharmacy and pharmacology. 06/2012; 64(6):897-907.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-11 (IL-11) was originally identified as the cytokine that could induce the proliferation of human cells. Recent studies have shown that IL-11 plays a critical role in tumor growth, angiogenesis, and metastasis. Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effects of IL-11 on human chondrosarcoma cells are largely unknown. Here, we found that IL-11 increased the migration and expression of intercellular adhesion molecule-1 (ICAM)-1 in human chondrosarcoma cells. We also found that human chondrosarcoma tissues had significant expression of the IL-11 which was higher than that in primary chondrocytes. The phosphatidylinositol 3-kinase (PI3K), Akt, and NF-κB pathways were activated by IL-11 treatment, and the IL-11-induced expression of ICAM-1 and migration activity were inhibited by the specific inhibitors and mutant forms of PI3K, Akt, and NF-κB cascades. Taken together, our results indicate that IL-11 enhanced the migration of the chondrosarcoma cells by increasing ICAM-1 expression through the IL-11Rα receptor, PI3K, Akt, and NF-κB signal transduction pathway. J. Cell. Biochem. 113: 3353-3362, 2012. © 2012 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 05/2012; 113(11):3353-62. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondrosarcoma is a soft tissue sarcoma with a poor prognosis that is unresponsive to conventional chemotherapy. Surgical treatment leads to severe disability with high rates of local recurrence and life threat. Curcumin, an active compound in turmeric and curry, has been proven to induce tumor apoptosis and inhibit tumor proliferation, invasion, angiogenesis, and metastasis of cancer cells. In this study, we investigated the anticancer effects of curcumin in human chondrosarcoma cells. Curcumin induced apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353) but not in primary chondrocytes. Curcumin induced upregulation of Fas, FasL, and DR5 expression in chondrosarcoma cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced curcumin-induced cell death. In addition, p53 involved in curcumin-mediated Fas, FasL, and DR5 expression and cell apoptosis in chondrosarcoma cells. Most importantly, animal studies revealed a dramatic 60% reduction in tumor volume after 21 days of treatment. Thus, curcumin may be a novel anticancer agent for the treatment of chondrosarcoma.
    International immunopharmacology 04/2012; 13(2):163-9. · 2.21 Impact Factor

Publication Stats

1k Citations
292.94 Total Impact Points

Institutions

  • 2004–2014
    • China Medical University Hospital
      • Department of Radiology
      臺中市, Taiwan, Taiwan
  • 2013
    • Changhua Christian Hospital
      Chang-hua Pei-pu, Taiwan, Taiwan
    • Feng Chia University
      • Department of Materials Science and Engineering
      臺中市, Taiwan, Taiwan
  • 2011–2013
    • National Chung Hsing University
      • • Institute of Biomedical Sciences
      • • Graduate Institute of Biotechnology
      臺中市, Taiwan, Taiwan
    • National Taiwan University Hospital
      T’ai-pei, Taipei, Taiwan
  • 2012
    • Chi-Mei Medical Center
      臺南市, Taiwan, Taiwan
  • 2007–2012
    • Taichung Veterans General Hospital
      臺中市, Taiwan, Taiwan
    • Chung Shan Medical University
      • Institute of Medicine
      Taichung, Taiwan, Taiwan
  • 2005–2010
    • China Medical University (ROC)
      臺中市, Taiwan, Taiwan
  • 2009
    • National Changhua University of Education
      Chang-hua Pei-pu, Taiwan, Taiwan
  • 2008–2009
    • National Taiwan University
      • • Graduate Institute of Toxicology
      • • Institute of Biomedical Engineering
      Taipei, Taipei, Taiwan
  • 2003
    • Taichung Hospital
      臺中市, Taiwan, Taiwan