Salvatore D'Aniello

University of Barcelona, Barcino, Catalonia, Spain

Are you Salvatore D'Aniello?

Claim your profile

Publications (29)136.87 Total impact

  • Source
    Esther M Ullrich-Lüter, Salvatore D'Aniello, Maria I Arnone
    [Show abstract] [Hide abstract]
    ABSTRACT: Today's progress in molecular analysis and, in particular, the increased availability of genome sequences have enabled us to investigate photoreceptor cells (PRCs) in organisms that were formerly inaccessible to experimental manipulation. Our studies of marine non-chordate deuterostomes thus aim to bridge a gap of knowledge regarding the evolution of deuterostome PRCs prior to the emergence of vertebrates' eyes. In this contribution, we will show evidence for expression of a c-opsin photopigment, which, according to our phylogenetic analysis, is closely related to an assemblage of chordate visual c-opsins. An antibody raised against sea urchins' c-opsin protein (Sp-Opsin1) recognizes epitopes in a variety of tissues of different echinoderms. While in sea urchins this c-opsin is expressed in locomotory and buccal tube feet, spines, pedicellaria, and epidermis, in brittlestars and starfish we found the immuno-reaction to be located exclusively in cells within the animals' spines. Structural characteristics of these c-opsin+ PRC types include the close vicinity/connection to nerve strands and a, so far unexplored, conspicuous association with the animals' calcite skeleton, which previously has been hypothesized to play a role in echinoderm photobiology. These features are discussed within the context of the evolution of photoreceptors in echinoderms and in deuterostomes generally.
    Integrative and Comparative Biology 05/2013; · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain function requires neuronal activity-dependent energy consumption. Neuronal energy supply is controlled by molecular mechanisms that regulate mitochondrial dynamics, including Kinesin motors and Mitofusins, Miro1-2 and Trak2 proteins. Here we show a new protein family that localizes to the mitochondria and controls mitochondrial dynamics. This family of proteins is encoded by an array of armadillo (Arm) repeat-containing genes located on the X chromosome. The Armcx cluster is unique to Eutherian mammals and evolved from a single ancestor gene (Armc10). We show that these genes are highly expressed in the developing and adult nervous system. Furthermore, we demonstrate that Armcx3 expression levels regulate mitochondrial dynamics and trafficking in neurons, and that Alex3 interacts with the Kinesin/Miro/Trak2 complex in a Ca(2+)-dependent manner. Our data provide evidence of a new Eutherian-specific family of mitochondrial proteins that controls mitochondrial dynamics and indicate that this key process is differentially regulated in the brain of higher vertebrates.
    Nature Communications 01/2012; 3:814. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.
    PLoS ONE 01/2012; 7(4):e35731. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific regulatory states, i.e., sets of expressed transcription factors, define the gene expression capabilities of cells in animal development. Here we explore the functional significance of an unprecedented example of regulatory state conservation from the cnidarian Nematostella to Drosophila, sea urchin, fish, and mammals. Our probe is a deeply conserved cis-regulatory DNA module of the SRY-box B2 (soxB2), recognizable at the sequence level across many phyla. Transphyletic cis-regulatory DNA transfer experiments reveal that the plesiomorphic control function of this module may have been to respond to a regulatory state associated with neuronal differentiation. By introducing expression constructs driven by this module from any phyletic source into the genomes of diverse developing animals, we discover that the regulatory state to which it responds is used at different levels of the neurogenic developmental process, including patterning and development of the vertebrate forebrain and neurogenesis in the Drosophila optic lobe and brain. The regulatory state recognized by the conserved DNA sequence may have been redeployed to different levels of the developmental regulatory program during evolution of complex central nervous systems.
    Proceedings of the National Academy of Sciences 08/2011; 108(34):14186-91. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) is essential to many physiological functions and operates in several signaling pathways. It is not understood how and when the different isoforms of nitric oxide synthase (NOS), the enzyme responsible for NO production, evolved in metazoans. This study investigates the number and structure of metazoan NOS enzymes by genome data mining and direct cloning of Nos genes from the lamprey. In total, 181 NOS proteins are analyzed from 33 invertebrate and 63 vertebrate species. Comparisons among protein and gene structures, combined with phylogenetic and syntenic studies, provide novel insights into how NOS isoforms arose and diverged. Protein domains and gene organization--that is, intron positions and phases--of animal NOS are remarkably conserved across all lineages, even in fast-evolving species. Phylogenetic and syntenic analyses support the view that a proto-NOS isoform was recurrently duplicated in different lineages, acquiring new structural configurations through gains and losses of protein motifs. We propose that in vertebrates a first duplication took place after the agnathan-gnathostome split followed by a paralog loss. A second duplication occurred during early tetrapod evolution, giving rise to the three isoforms--I, II, and III--in current mammals. Overall, NOS family evolution was the result of multiple gene and genome duplication events together with changes in protein architecture.
    Molecular Biology and Evolution 01/2011; 28(1):163-79. · 14.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: D-aspartic acid (D-Asp) is present in invertebrate and vertebrate neuroendocrine tissues, where it carries out important physiological functions and is implicated in nervous system development. We show here that D-Asp is a novel endogenous neurotransmitter in two distantly related animals, a mammal (Rattus norvegicus) and a mollusk (Loligo vulgaris). Our main findings demonstrate that D-Asp is present in high concentrations in the synaptic vesicles of axon terminals; synthesis for this amino acid occurs in neurons by conversion of L-Asp to D-Asp via D-aspartate racemase; depolarization of nerve endings with K(+) ions evokes an immediate release of D-Asp in a Ca(2+) dependent manner; specific receptors for D-Asp occur at the postsynaptic membrane, as demonstrated by binding assays and by the expansion of squid skin chromatophores; D-aspartate oxidase, the specific enzyme that oxidizes D-Asp, is present in the postsynaptic membranes; and stimulation of nerve endings with D-Asp triggers signal transduction by increasing the second messenger cAMP. Taken together, these data demonstrate that D-Asp fulfills all criteria necessary to be considered a novel endogenous neurotransmitter. Given its known role in neurogenesis, learning, and neuropathologies, our results have important implications for biomedical and clinical research.
    The FASEB Journal 12/2010; 25(3):1014-27. · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine planarians were collected extensively from the Iberian Peninsula and Italy. As a result we provide new distributional records of six species of marine triclads, including the description of one new genus and species. The study increases substantially our knowledge of the distribution of this group of animals in Spain and reveals that even relatively well studied areas, such as Italy, still yield new species. In addition, we performed immunostaining studies of the nervous system of three of the species, which revealed the detailed organization of the main nerve cords and their branches. In the new species, the lateral nerve branches showed an arrangement that is different from that of the other species.
    Journal of the Marine Biological Association of the UK 02/2010; 90(02):409 - 422. · 1.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.
    Developmental Biology 02/2010; 340(2):269-82. · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GnRH, originally isolated from mammalian hypothalamus, is a key player in the control of vertebrate reproduction. Employing reverse-phase chromatography, we purified a peptide of relative molecular mass of 1182.60 Da from the cephalochordate amphioxus Branchiostoma lanceolatum. We found that its amino acid sequence (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH(2)) was identical to that of mammalian GnRH. The highest concentrations (4.04 +/- 0.3 microg/g tissue), localized in the anterior part of the body, occurred in November, a time when amphioxus gonads prepare for the seasonal spawning. Furthermore, the biological activity of amphioxus GnRH was investigated by examining its capability to elicit LH release from the rodent pituitary gland. The origins of GnRH can be traced back to the origins of chordates. The seasonal variations of amphioxus GnRH also suggest an ancient role of this peptide in the control of reproduction in chordates, even before the evolution of a proper pituitary gland.
    Endocrinology 11/2008; 150(2):812-20. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The single amphioxus Hox cluster contains 15 genes and may well resemble the ancestral chordate Hox cluster. We have sequenced the Hox genomic complement of the European amphioxus Branchiostoma lanceolatum and compared it to the American species, Branchiostoma floridae, by phylogenetic footprinting to gain insights into the evolution of Hox gene regulation in chordates. We found that Hox intergenic regions are largely conserved between the two amphioxus species, especially in the case of genes located at the 3' of the cluster, a trend previously observed in vertebrates. We further compared the amphioxus Hox cluster with the human HoxA, HoxB, HoxC, and HoxD clusters, finding several conserved noncoding regions, both in intergenic and intronic regions. This suggests that the regulation of Hox genes is highly conserved across chordates, consistent with the similar Hox expression patterns in vertebrates and amphioxus.
    Development Genes and Evolution 10/2008; 218(11-12):591-7. · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine kinase (TK) proteins play a central role in cellular behavior and development of animals. The expansion of this superfamily is regarded as a key event in the evolution of the complex signaling pathways and gene networks of metazoans and is a prominent example of how shuffling of protein modules may generate molecular novelties. Using the intron/exon structure within the TK domain (TK intron code) as a complementary tool for the assignment of orthology and paralogy, we identified and studied the 118 TK proteins of the amphioxus Branchiostoma floridae genome to elucidate TK gene family evolution in metazoans and chordates in particular. Unlike all characterized metazoans to date, amphioxus has members of all known widespread TK families, with not a single loss. Putting amphioxus TKs in an evolutionary context, including new data from the cnidarian Nematostella vectensis, the echinoderm Strongylocentrotus purpuratus, and the ascidian Ciona intestinalis, we suggest new evolutionary histories for different TK families and draw a new global picture of gene loss/gain in the different phyla. Surprisingly, our survey also detected an unprecedented expansion of a group of closely related TK families, including TIE, FGFR, PDGFR, and RET, due most probably to massive gene duplication and exon shuffling. Based on their highly similar intron/exon structure at the TK domain, we suggest that this group of TK families constitute a superfamily of TK proteins, which we termed EXpanding TK, after their seemingly unique propensity to gene duplication and exon shuffling, not only in amphioxus but also across all metazoan groups. Due to this extreme tendency to both retention and expansion of TK genes, amphioxus harbors the richest and most diverse TK repertoire among all metazoans studied so far, retaining most of the gene complement of its ancestors, but having evolved its own repertoire of genetic novelties.
    Molecular Biology and Evolution 08/2008; 25(9):1841-54. · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pallid anchovy fillet, friendly filtering, peacefully laying and little lancelet are some of the nicknames and adjectives the cephalochordate amphioxus has received throughout the last two centuries. Traditionally regarded as the living representative of the last ancestor of vertebrates, amphioxus has recently been promoted to the privileged position of being the most ancient chordate. The preliminary analysis of its prototypical genome is nearly completed, and its hidden secrets towards the understanding of the primitive chordate and deuterostome genomes will soon see the light. Amphioxus embryonic development and body plan have remained in evolutionary stasis since the cephalochordate lineage split from the chordate ancestor about 500 million years ago. In contrast, amphioxus research is far from being at a standstill; in Europe, thanks to the international cooperation and the Banyuls Oceanographic Station, amphioxus embryos are obtained on demand during the spawning season. We summarise here our progress towards the dream of the experimental manipulation of the amphioxus embryo, to enter the era of Experimental Evo-Devo.
    The International journal of developmental biology 07/2008; 53(8-10):1359-66. · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The secretory activity of the Harderian gland (HG) is influenced by both exogenous (such as light and temperature) and endogenous (such as prolactin, thyroid hormones and steroid hormones) factors, which vary among species. In the present study, the effects of hypothyroidism on the rat HG were examined at morphological and biochemical levels. The decrease in cytoplasmic lipoproteic vacuoles and the increase in mucosubstance secretion in the acinar lumina were the most notable histological effects elicited by hypothyroidism. The release of all granules with nuclei and cellular debris suggested the occurrence of holocrine secretion. Electron microscopy revealed in the glandular cells of hypothyroid rat an increased condensation of chromatin in the nuclei, mitochondria with decreased cristae and vacuolisation, decreased glycogen granules, autophagic vacuoles, and lipofuscins in the cytoplasm. TUNEL reaction indicated DNA fragmentation in hypothyroid HG, indicative of an underlying apoptotic process. Translocation of cytochrome c from mitochondria to cytosol strongly supported this hypothesis. In conclusion, these findings indicate that thyroid hormones play a pivotal role in preserving the structural integrity of the rat HG and, hence, its secretory activity.
    Journal of Experimental Biology 03/2008; 211(Pt 4):606-12. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.
    PLoS ONE 01/2008; 3(6):e2344. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding how the chordate body plan originated and evolved is still controversial. The discovery by Spemann and Mangold in 1924 of the vertebrate organizer and its inductive properties in patterning the AP and DV axis was followed by a long gap until the 1960s when scientists started characterizing the molecular events responsible for such inductions. However, the evolutionary origin of the organizer itself remained obscure until very recently; did it appear together with the origin and radiation of vertebrates, or was it a chordate affair? A recent study by Yu and collaborators,1 which analyses the expression of several organizer-specific genes in amphioxus together with recent phylogenetic data that reversed the position of invertebrate extant chordates (e.g. urochordates and cephalochordates), indicates that the organizer probably appeared in early chordates. It likely had separate signalling centres generating BMP and Wnt signalling gradients along the DV and AP axis. The organizer was then lost in the urochordate lineage, most probably as an adaptation to a rapid and determinate development.
    BioEssays 08/2007; 29(7):619-24. · 5.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cephalochordate amphioxus (Branchiostoma sp.) is an important animal model for studying the evolution of chordate developmental mechanisms. Obtaining amphioxus embryos is a key step for these studies. It has been shown that an increase of 3-4 degrees C in water temperature triggers spawning of the European amphioxus (Branchiostoma lanceolatum) in captivity, however, very little is known about the natural spawning behavior of this species in the field. In this work, we have followed the spawning behavior of the European amphioxus during two spawning seasons (2004 and 2005), both in the field and in captivity. We show that animals in the field spawn approximately from mid-May through early July, but depending on the year, they show different patterns of spawning. Thus, even if temperature has a critical role in the induction of the spawning in captivity, it is not the major factor in the field. Moreover, we report some improvements on the methodology for inducing spawning in captivity (e.g. in maintenance, light cycle control and induction of spawning in a laboratory without running sea water system). These studies have important implications for amphioxus animal husbandry and for improving laboratory techniques to develop amphioxus as an experimental animal model.
    Journal of Experimental Zoology Part B Molecular and Developmental Evolution 08/2007; 308(4):484-93. · 2.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NMDA (N-methyl-D-aspartic acid) is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone) in the hypothalamus, and of LH (Luteinizing Hormone) and PRL (Prolactin) in the pituitary gland. In this study we show evidence for the occurrence of endogenous NMDA in the amphioxus Branchiostoma lanceolatum. A relatively high concentration of NMDA occurs in the nervous system of this species (3.08 +/- 0.37 nmol/g tissue in the nerve cord and 10.52 +/- 1.41 nmol/g tissue in the cephalic vesicle). As in rat, in amphioxus NMDA is also biosynthesized from D-aspartic acid (D-Asp) by a NMDA synthase (also called D-aspartate methyl transferase). Given the simplicity of the amphioxus nervous and endocrine systems compared to mammalian, the discovery of NMDA in this protochordate is important to gain insights into the role of endogenous NMDA in the nervous and endocrine systems of metazoans and particularly in the chordate lineage.
    BMC Neuroscience 02/2007; 8:109. · 3.00 Impact Factor
  • S D'Aniello, J Garcia-Fernàndez
    [Show abstract] [Hide abstract]
    ABSTRACT: The lancelet (amphioxus), a cephalochordate, is the closest invertebrate relative to vertebrates, with a simple vertebrate-like body plan and a prototypical genome. We have determined D-aspartic acid (D-Asp) and major free L-amino acids (L-AAs) content in the nervous system (neural tube) of the European amphioxus Branchiostoma lanceolatum, and have compared these values with those of molluscs and human brain. The B. lanceolatum neural tube contains relatively high amounts of L-Glu, L-Asp, L-Ala and L-Gly. Thus, the amphioxus neural tube has in common with the molluscan and human nervous systems the presence of appreciable amounts of L-Glu and L-Asp, which suggests that they are the most common neurotransmitters among these phylogenetically distant animal groups. The relatively high concentration of L-Ala in amphioxus is consistent with that found in molluscs and the low concentration of taurine is consistent with that described in the human brain. The D-Asp concentration, very high in the molluscan nervous system, was rather low in amphioxus, although a little higher than the extremely low amounts observed in the human brain. Our data on free amino acids composition is in agreement with the intermediate phylogenetic position of cephalochordates, in terms of the evolutionary transition from simple to complex neural systems.
    Amino Acids 02/2007; 32(1):21-6. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx "retinal" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals.
    Differentiation 07/2006; 74(5):222-34. · 2.86 Impact Factor
  • Source
    Juan Pascual-Anaya, Salvatore D'Aniello
    [Show abstract] [Hide abstract]
    ABSTRACT: The cephalochordate amphioxus is the closest invertebrate relative to vertebrates. In this study, using HPLC technique, free L-amino acids (L-AAs) and D-aspartic acid (D-Asp) have been detected in the nervous system of the amphioxus Branchiostoma lanceolatum. Among other amino acids glutamate, aspartate, glycine, alanine and serine are the amino acids found at the greatest concentrations. As it occurs in the nervous system of other animal phyla, glutamate (L-Glu) and aspartate (L-Asp) are present at very high concentrations in the amphioxus nervous system compared to other amino acids, whereas the concentration of taurine and gamma-aminobutyric acid (GABA) is very low. Interestingly, as it is the case in vertebrates, D-aspartic acid is present as an endogenous compound in amphioxus nervous tissues. The physiological function of excitatory amino acids, and D-aspartate in particular, are discussed in terms of evolution of the nervous system under an Evo-fun (Evolution of function) perspective.
    International journal of biological sciences 02/2006; 2(2):87-92. · 3.17 Impact Factor

Publication Stats

452 Citations
136.87 Total Impact Points

Institutions

  • 2006–2011
    • University of Barcelona
      • • Department of Genetics
      • • Instituto de Biomedicina (IBUB)
      Barcino, Catalonia, Spain
  • 2001–2006
    • Stazione Zoologica Anton Dohrn di Napoli
      • Laboratory of Biochemistry and Molecular Biology
      Napoli, Campania, Italy
  • 2003
    • University of Naples Federico II
      • Department of Biology
      Napoli, Campania, Italy