Maria R Parkhurst

National Institutes of Health, Bethesda, MD, United States

Are you Maria R Parkhurst?

Claim your profile

Publications (32)228.07 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Limited evidence exists that humans mount a mutation-specific T cell response to epithelial cancers. We used a whole-exomic-sequencing-based approach to demonstrate that tumor-infiltrating lymphocytes (TIL) from a patient with metastatic cholangiocarcinoma contained CD4+ T helper 1 (TH1) cells recognizing a mutation in erbb2 interacting protein (ERBB2IP) expressed by the cancer. After adoptive transfer of TIL containing about 25% mutation-specific polyfunctional TH1 cells, the patient achieved a decrease in target lesions with prolonged stabilization of disease. Upon disease progression, the patient was retreated with a >95% pure population of mutation-reactive TH1 cells and again experienced tumor regression. These results provide evidence that a CD4+ T cell response against a mutated antigen can be harnessed to mediate regression of a metastatic epithelial cancer.
    Science 05/2014; 344(6184):641-5. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer testis antigens, such as NY-ESO-1, are expressed in a variety of prevalent tumors and represent potential targets for T-cell receptor (TCR) gene therapy. DNA encoding a murine anti-NY-ESO-1 TCR gene (mTCR) was isolated from immunized HLA-A*0201 transgenic mice and inserted into a γ-retroviral vector. Two mTCR vectors were produced and used to transduce human PBL. Transduced cells were cocultured with tumor target cell lines and T2 cells pulsed with the NY-ESO-1 peptide, and assayed for cytokine release and cell lysis activity. The most active TCR construct was selected for production of a master cell bank for clinical use. mTCR-transduced PBL maintained TCR expression in short-term and long-term culture, ranging from 50% to 90% efficiency 7-11 days after stimulation and 46%-82% 10-20 days after restimulation. High levels of interferon-γ secretion were observed (1000-12000 pg/mL), in tumor coculture assays and recognition of peptide-pulsed cells was observed at 0.1 ng/mL, suggesting that the new mTCR had high avidity for antigen recognition. mTCR-transduced T cells also specifically lysed human tumor targets. In all assays, the mTCR was equivalent or better than the comparable human TCR. As the functional activity of TCR-transduced cells may be affected by the formation of mixed dimers, mTCRs, which are less likely to form mixed dimers with endogenous hTCRs, may be more effective in vivo. This new mTCR targeted to NY-ESO-1 represents a novel potential therapeutic option for adoptive cell-transfer therapy for a variety of malignancies.
    Journal of immunotherapy (Hagerstown, Md.: 1997) 03/2014; · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols.
    Journal of Translational Medicine 04/2012; 10:69. · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) can mediate regression of metastatic melanoma. However, many patients with cancer are ineligible for such treatment because their TIL do not expand sufficiently or because their tumors have lost expression of antigens and/or MHC molecules. Natural killer (NK) cells are large granular lymphocytes that lyse tumor cells in a non-MHC-restricted manner. Therefore, we initiated in a clinical trial to evaluate the efficacy of adoptively transferred autologous NK cells to treat patients with cancers who were ineligible for treatment with TIL. Patients with metastatic melanoma or renal cell carcinoma were treated with adoptively transferred in vitro activated autologous NK cells after the patients received a lymphodepleting but nonmyeloablative chemotherapy regimen. Clinical responses and persistence of the adoptively transferred cells were evaluated. Eight patients were treated with an average of 4.7 × 10(10) (± 2.1 × 10(10)) NK cells. The infused cells exhibited high levels of lytic activity in vitro. Although no clinical responses were observed, the adoptively transferred NK cells seemed to persist in the peripheral circulation of patients for at least one week posttransfer and, in some patients, for several months. However, the persistent NK cells in the circulation expressed significantly lower levels of the key activating receptor NKG2D and could not lyse tumor cell targets in vitro unless reactivated with IL-2. The persistent NK cells could mediate antibody-dependent cell-mediated cytotoxicity without cytokine reactivation in vitro, which suggests that coupling adoptive NK cell transfer with monoclonal antibody administration deserves evaluation.
    Clinical Cancer Research 08/2011; 17(19):6287-97. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adoptive immunotherapy using TCR-engineered PBLs against melanocyte differentiation Ags mediates objective tumor regression but is associated with on-target toxicity. To avoid toxicity to normal tissues, we targeted cancer testis Ag (CTA) MAGE-A3, which is widely expressed in a range of epithelial malignancies but is not expressed in most normal tissues. To generate high-avidity TCRs against MAGE-A3, we employed a transgenic mouse model that expresses the human HLA-A*0201 molecule. Mice were immunized with two HLA-A*0201-restricted peptides of MAGE-A3: 112-120 (KVAELVHFL) or MAGE-A3: 271-279 (FLWGPRALV), and T cell clones were generated. MAGE-A3-specific TCR α- and β-chains were isolated and cloned into a retroviral vector. Expression of both TCRs in human PBLs demonstrated Ag-specific reactivity against a range of melanoma and nonmelanoma tumor cells. The TCR against MAGE-A3: 112-120 was selected for further development based on superior reactivity against tumor target cells. Interestingly, peptide epitopes from MAGE-A3 and MAGE-A12 (and to a lesser extent, peptides from MAGE-A2 and MAGE-A6) were recognized by PBLs engineered to express this TCR. To further improve TCR function, single amino acid variants of the CDR3 α-chain were generated. Substitution of alanine to threonine at position 118 of the α-chain in the CDR3 region of the TCR improved its functional avidity in CD4 and CD8 cells. On the basis of these results, a clinical trial is planned in which patients bearing a variety of tumor histologies will receive autologous PBLs that have been transduced with this optimized anti-MAGE-A3 TCR.
    The Journal of Immunology 01/2011; 186(2):685-96. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Production of clinical-grade gammaretroviral vectors for ex vivo gene delivery requires a scalable process that can rapidly generate large amounts of vector supernatant, clear large numbers of residual packaging cells with minimal decreases in vector titer, and satisfy all current regulatory guidelines regarding product biosafety. To that end, we have developed a simplified method that is compliant with current good manufacturing practices for the production of clinical-grade gammaretroviral vectors in a clinical research environment. We validated a large-scale production platform utilizing 1,700-cm(2) expanded surface roller bottles and a "modified" step-filtration process consisting of a 40/150-μm dual-screen filter for aggregate removal followed by a Sepacell 500II leukocyte reduction filter for removal of residual packaging cells. This clarification process can clear at least 2 × 10(9) viable producer cells using a single filter set-up without any significant loss of titer post-filtration. This platform typically generates 18 liters of vector supernatant to support small-scale clinical trials, but can easily be scaled up to 70 liters during a single manufacturing run. To date, this platform has generated five clinical-grade gammaretroviral vector products, four of which are now being used in adoptive cell therapy clinical trials for the treatment of a variety of solid cancers.
    Human gene therapy 01/2011; 22(1):107-15. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autologous T lymphocytes genetically engineered to express a murine T cell receptor (TCR) against human carcinoembryonic antigen (CEA) were administered to three patients with metastatic colorectal cancer refractory to standard treatments. All patients experienced profound decreases in serum CEA levels (74-99%), and one patient had an objective regression of cancer metastatic to the lung and liver. However, a severe transient inflammatory colitis that represented a dose limiting toxicity was induced in all three patients. This report represents the first example of objective regression of metastatic colorectal cancer mediated by adoptive T cell transfer and illustrates the successful use of a TCR, raised in human leukocyte antigen (HLA) transgenic mice, against a human tumor associated antigen. It also emphasizes the destructive power of small numbers of highly avid T cells and the limitations of using CEA as a target for cancer immunotherapy.
    Molecular Therapy 12/2010; 19(3):620-6. · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carcinoembryonic antigen (CEA) is a tumor-associated protein expressed on a variety of adenocarcinomas. To develop an immunotherapy for patients with cancers that overexpress CEA, we isolated and genetically modified a T-cell receptors (TCRs) that specifically bound a CEA peptide on human cancer cells. HLA-A2.1 transgenic mice were immunized with CEA:691-699. A CEA-reactive TCR was isolated from splenocytes of these mice and was genetically introduced into human peripheral blood lymphocytes via RNA electroporation or retroviral transduction. Amino acid substitutions were introduced throughout the complementarity determining regions (CDR1, CDR2, and CDR3) of both TCR alpha and beta chains to improve recognition of CEA. Murine lymphocytes bearing the CEA-reactive TCR specifically recognized peptide-loaded T2 cells and HLA-A2.1(+) CEA(+) human colon cancer cells. Both CD8(+) and CD4(+) human lymphocytes expressing the murine TCR specifically recognized peptide-loaded T2 cells. However, only gene-modified CD8(+) lymphocytes specifically recognized HLA-A2.1(+) CEA(+) colon cancer cell lines, and tumor cell recognition was weak and variable. We identified two substitutions in the CDR3 of the alpha chain that significantly influenced tumor cell recognition by human peripheral blood lymphocytes. One substitution, T for S at position 112 (S112T), enhanced tumor cell recognition by CD8(+) lymphocytes, and a second dually substituted receptor (S112T L110F) enhanced tumor cell recognition by CD4(+) T cells. The modified CEA-reactive TCRs are good candidates for future gene therapy clinical trials and show the power of selected amino acid substitutions in the antigen-binding regions of the TCR to enhance desired reactivities.
    Clinical Cancer Research 02/2009; 15(1):169-80. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adoptive cell transfer (ACT) of tumor-reactive lymphocytes has been shown to be an effective treatment for cancer patients. Studies in murine models of ACT indicated that antitumor efficacy of adoptively transferred T cells is dependent on the differentiation status of the cells, with lymphocyte differentiation inversely correlated with in vivo antitumor effectiveness. T-cell in vitro development technologies provide a new opportunity to generate naive T cells for the purpose of ACT. In this study, we genetically modified human umbilical cord blood-derived hematopoietic stem cells (HSCs) to express tumor antigen-specific T-cell receptor (TCR) genes and generated T lymphocytes by coculture with a murine cell line expressing Notch-1 ligand, Delta-like-1 (OP9-DL1). Input HSCs were differentiated into T cells as evidenced by the expression of T-cell markers, such as CD7, CD1a, CD4, CD8, and CD3, and by detection of TCR excision circles. We found that such in vitro differentiated T cells expressed the TCR and showed HLA-A2-restricted, specific recognition and killing of tumor antigen peptide-pulsed antigen-presenting cells but manifested additional natural killer cell-like killing of tumor cell lines. The genetic manipulation of HSCs has broad implications for ACT of cancer.
    Cancer Research 04/2007; 67(6):2425-9. · 8.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic modification of dendritic cells (DCs) with recombinant vectors encoding tumor antigens may aid in developing new immunotherapeutic treatments for patients with cancer. Here, we characterized antigen presentation by human DCs genetically modified with plasmid cDNAs, RNAs, adenoviruses, or retroviruses, encoding the melanoma antigen gp100 or the tumor-testis antigen NY-ESO-1. Monocyte-derived DCs were electroporated with cDNAs or RNAs, or transduced with adenoviruses. CD34+ hematopoietic stem cell-derived DCs were used for retroviral transduction. Genetically modified DCs were coincubated with CD8+ and CD4+ T cells that recognized major histocompatibility complex class I- and class II-restricted epitopes from gp100 and NY-ESO-1, and specific recognition was evaluated by interferongamma secretion. Cytokine release by both CD8+ and CD4+ T cells was consistently higher in response to DCs modified with adenoviruses than cDNAs or RNAs, and maturation of DCs after genetic modification did not consistently alter patterns of recognition. Also, retrovirally transduced DCs encoding gp100 were well recognized by both CD8+ and CD4+ T cells. These data suggest that DCs transduced with viral vectors may be more efficient than DCs transfected with cDNAs or RNAs for the induction of tumor reactive CD8+ and CD4+ T cells in vitro and in human vaccination trials.
    Journla of Immunotherapy 01/2006; 29(6):616-27. · 3.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adoptive transfer of human tumor-reactive T lymphocytes into autologous patients can mediate the regression of metastatic melanoma. Here, the in vitro generation of melanoma-reactive T lymphocytes was compared using 3 common gamma-chain cytokines, interleukin (IL)-2, IL-7, and IL-15, alone or in combination. The proliferation, function, and phenotype were evaluated for tumor-reactive T cells derived from peripheral blood mononuclear cells (PBMCs) from patients previously immunized with the melanoma-associated peptide gp100:209-217(210M) and PBMCs transduced with a retrovirus encoding the alpha and beta chains of a gp100-reactive T-cell receptor (TCR). IL-7 alone did not induce significant proliferation of any tumor-reactive T-cell population, whereas IL-2 and IL-15 induced significant proliferation of tumor-reactive T lymphocytes from both sources. Cells cultured in the presence of IL-2 or IL-15 secreted comparable amounts of interferon-gamma and IL-2 in response to melanoma cells in vitro and were phenotypically similar in terms of costimulatory molecules (CD27 and CD28), cytokine receptors (CD25, CD122, and CD127), and a lymphoid homing molecule (CD62L). In addition, the proliferation, function, and phenotype of T cells cultured with combinations of IL-2, IL-7, and IL-15 were similar to those grown with IL-2 alone. The effects of these cytokines on TCR stimulation of CD45RA+ naive cells derived from adult patients and from human umbilical cord blood were also compared. Similar to the data with activated tumor-reactive T lymphocytes, IL-7 alone did not support significant proliferation of naive T cells after TCR stimulation with anti-CD3, although IL-2 and IL-15 induced comparable proliferation of T lymphocytes with similar phenotypic attributes.
    Journla of Immunotherapy 01/2006; 29(3):284-93. · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomerase is an attractive target antigen for cancer immunotherapies because it is expressed in >85% of human tumors but is rarely found in normal tissues. A HLA-A*0201-restricted T-cell epitope was previously identified within telomerase reverse transcriptase hTERT:540-548. This peptide was reported to induce CTL that recognized tumor cells and transfectants that endogenously expressed telomerase. Therefore, we initiated a clinical protocol to evaluate the therapeutic and immunological efficacy of this peptide. Fourteen patients with metastatic cancers were vaccinated with hTERT:540-548 emulsified in incomplete Freund's adjuvant. In 7 patients, peripheral blood mononuclear cells collected after immunization recognized hTERT:540-548, whereas those collected before vaccination did not. However, none of these CTLs recognized tumors that endogenously expressed telomerase, and none of the patients had an objective clinical response. Several highly avid T-cell clones were generated that recognized T2 cells pulsed with <or=1 nm hTERT:540-548, but none of these recognized HLA-A*0201(+) hTERT(+) tumors or cells transduced with the human telomerase reverse transcriptase (hTERT) gene. Also, an antibody specific for hTERT:540-548/HLA-A*0201 complexes stained peptide-pulsed cells but not telomerase(+) tumors. Our results are discordant with previous studies and those of a clinical trial that claimed peripheral blood mononuclear cells from patients vaccinated with peptide-pulsed dendritic cells lysed hTERT(+) tumors. However, our findings are consistent with a previous study that demonstrated that the hTERT:540-548 peptide is cleaved in the proteasome. These results suggest that hTERT:540-548 is not presented on the surfaces of tumor cells in the context of HLA-A*0201 and will not be useful for the immunotherapy of patients with cancer.
    Clinical Cancer Research 08/2004; 10(14):4688-98. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4+ T helper cells may play a critical role in the induction and maintenance of a therapeutic immune response to cancer. To evaluate the efficacy with which a recombinant tumor-associated protein can induce antigen-reactive CD4+ T cells, we stimulated peripheral blood lymphocytes from patients with melanoma in vitro with the purified melanoma antigen gp100 produced in Escherichia coli. In preliminary experiments, we observed that peripheral blood mononuclear cells could process and present known HLA-DRbeta1*0401 and HLA-DRbeta1*0701 restricted epitopes to gp100-reactive CD4+ T cell lines after being loaded exogenously with protein. Therefore, we used autologous protein-loaded peripheral blood mononuclear cells as antigen presenting cells. From four of nine patients who expressed both HLA-DRbeta1*0401 and HLA-DRbeta1*0701, we raised five gp100-reactive CD4+ T cell populations that secreted TH1 type cytokines in response to exogenously loaded protein as well as target cells that endogenously expressed gp100 and MHC class II molecules, including transfectants and melanoma cells. Four of the five cultures specifically recognized the known HLA-DRbeta1*0401 and HLA-DRbeta1*0701 restricted epitopes gp100:44-59 and gp100:170-190, respectively. The fifth culture, and 30 T cell clones derived from it, specifically recognized a new peptide, gp100:420-435, in the context of HLA-DRbeta1*0701. These results suggest that recombinant tumor-associated proteins may be clinically applicable for the generation of CD4+ T helper cells in active vaccination strategies or adoptive cellular immunotherapies.
    Journla of Immunotherapy 01/2004; 27(2):79-91. · 3.46 Impact Factor
  • John P Riley, Steven A Rosenberg, Maria R Parkhurst
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of reverse immunology may be necessary to identify new tumor-associated antigens, particularly for cancers, against which tumor-reactive T cell populations have been difficult to establish. One approach has been to screen peptides derived from a candidate antigen with high major histocompatibility complex (MHC) binding affinities for the induction of tumor-reactive T lymphocytes in vitro. However, many candidate antigens that are overexpressed in tumors are nonmutated self-proteins, and unlike foreign or mutated proteins, immunodominant epitopes may not be expressed at high density on the surface of tumor cells. Therefore, to identify tumor-associated epitopes, it may be necessary to screen large panels of peptides with wide ranges of MHC binding affinities. The current methodology of stimulating peripheral blood lymphocytes (PBL) from donors expressing the MHC molecule of interest with individual peptides is impractical for screening such large panels. Therefore, we evaluated the use of mixtures of peptides with variable MHC binding affinities for the induction of tumor-reactive T lymphocytes with the melanoma antigens gp100 and an alternate isoform of tyrosinase-related protein 2 (TRP2-6b) as models. A mixture of 10 known human leukocyte antigen (HLA)-A*0201-restricted peptides from gp100 induced melanoma-reactive cytotoxic T lymphoycte (CTL) from multiple patients with metastatic melanoma. The majority of these T cell populations recognized the known immunodominant epitopes gp100:209-217 and gp100:280-288, even though the HLA-A*0201 binding affinities of these peptides were much lower than other peptides in the mixture. Similarly, melanoma-reactive CTL were generated with a mixture of HLA-A*0201-restricted peptides from TRP2-6b, and these responses were directed against the previously identified tumor-associated epitopes TRP2-6b:180-188, TRP2-6b:288-296 and TRP2-6b:403-411. These results suggest that the use of peptide mixtures may facilitate the identification of new tumor-associated antigens through the application of reverse immunology.
    Journal of Immunological Methods 06/2003; 276(1-2):103-19. · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hybrid cells generated by fusing dendritic cells with tumor cells (DC-TC) are currently being evaluated as cancer vaccines in preclinical models and human immunization trials. In this study, we evaluated the production of human DC-TC hybrids using an electrofusion protocol previously defined for murine cells. Human DCs were electrically fused with allogeneic melanoma cells (888mel) and were subsequently analyzed for coexpression of unique DC and TC markers using FACS and fluorescence microscopy. Dually fluorescent cells were clearly observed using both techniques after staining with Abs against distinct surface molecules suggesting that true cell fusion had occurred. We also evaluated the ability of human DC-TC hybrids to present tumor-associated epitopes in the context of both MHC class I and class II molecules. Allogeneic DCs expressing HLA-A*0201, HLA-DR beta 1*0401, and HLA-DR beta 1*0701 were fused with 888mel cells that do not express any of these MHC molecules, but do express multiple melanoma-associated Ags. DC-888mel hybrids efficiently presented HLA-A*0201-restricted epitopes from the melanoma Ags MART-1, gp100, tyrosinase, and tyrosinase-related protein 2 as evaluated by specific cytokine secretion from six distinct CTL lines. In contrast, DCs could not cross-present MHC class I-restricted epitopes after exogenously loading with gp100 protein. DC-888mel hybrids also presented HLA-DR beta 1*0401- and HLA-DR beta 1*0701-restricted peptides from gp100 to CD4(+) T cell populations. Therefore, fusions of DCs and tumor cells express both MHC class I- and class II-restricted tumor-associated epitopes and may be useful for the induction of tumor-reactive CD8(+) and CD4(+) T cells in vitro and in human vaccination trials.
    The Journal of Immunology 06/2003; 170(10):5317-25. · 5.52 Impact Factor
  • J.P. Riley, S.A. Rosenberg, M.R. Parkhurst
    Journal of Immunological Methods 01/2003; 276(1). · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple human cancer Ags have been identified, although little is known concerning which would be most effectively used in cancer immunotherapy. To gain insight into the selection of appropriate Ags, the immunologic reactivity of a patient who had a durable complete regression of melanoma metastases was measured. PBMCs were directly cloned using the monoclonal anti-CD3 Ab OKT3 and IL-2 without any bias introduced by previous culture. A lymphocyte clone recognized a previously unknown shared melanoma Ag that was identified as the BING-4 protein encoded in a gene-rich region of the extended class II MHC. The HLA-A2-restricted BING-4 immunodominant peptide was translated from a 10-aa-long alternative open reading frame. In vitro sensitization against this peptide generated lymphocytes reactive against HLA-A2(+) melanomas. Real-time semiquantitative RT-PCR analysis revealed that 8 of 15 melanoma cell lines overexpressed BING-4, and this correlated with recognition by lymphocytes. Overexpression was not found in normal tissues or other tumor types. Thus, BING-4 represents another candidate Ag for possible use in the immunotherapy of patients with melanoma.
    The Journal of Immunology 04/2002; 168(5):2402-7. · 5.52 Impact Factor
  • John P. Riley, Steven A. Rosenberg, Maria R. Parkhurst
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosinase has many advantages as a target antigen for the immunotherapy of patients with melanoma because it is expressed in nearly all melanoma specimens with a high degree of cellular homogeneity, and its distribution in normal tissues is limited to melanocytes. To broaden our ability to direct cellular immune responses against this protein, we pursued an investigation to identify new shared human leukocyte antigen (HLA)-A2.1 restricted epitopes from tyrosinase. Peptides were synthesized that fit a permissive HLA-A2.1 binding motif and did not span common sites of polymorphism. The binding affinity of each peptide to HLA-A2.1 relative to a standard peptide with intermediate binding affinity was evaluated in a competitive inhibition assay. Twelve peptides were selected that had binding affinities within 80% of that of the standard peptide, and these were used to stimulate peripheral blood mononuclear cells (PBMC) in vitro from three HLA-A2.1+ patients with metastatic melanoma. Cytotoxic T lymphocytes that specifically recognized peptide-pulsed target cells as well as HLA-A2.1+ tyrosinase+ melanoma cells were raised from one patient with tyrosinase:8-17 (CLLWSFQTSA). To evaluate further the immunogenicity of this peptide, PBMC from 23 HLA-A2.1+ patients were stimulated in vitro with tyrosinase:8-17. Eleven bulk T-cell cultures demonstrated specific peptide recognition, and six of these also recognized HLA-A2.1+ tyrosinase+ melanoma cells. These data suggest that tyrosinase:8-17 may be clinically useful for the treatment of patients with melanoma.
    Journal of Immunotherapy 06/2001; 24(3):212-220.
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY: Global alterations in chromatin structure profoundly influence gene expression in thoracic neoplasms, silencing tumor suppressors while facilitating the expression of various cancer testis antigens such as NY-ESO-1. Although recent studies have shown that histone deacetylase inhibitors can potentiate tumor suppressor gene induction mediated by demethylating agents in cancer cells, the ability of these agents to augment cancer testis antigen expression have not been fully defined. The authors designed the current study to determine whether the histone deacetylase inhibitor, depsipeptide FR901228 (DP), could enhance NY-ESO-1 induction mediated by the DNA demethylating agent 5-Aza-2'-deoxycytidine (DAC) in cell lines established primarily from thoracic cancers. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed that, under exposure conditions potentially achievable in clinical settings, DAC dramatically induced NY-ESO-1 expression in cultured cancer lines. DP alone mediated negligible target gene induction but significantly augmented DAC-mediated induction of NY-ESO-1. After DAC or sequential DAC-DP treatment, HLA-A*0201 cancer cells were recognized by an HLA-A*0201 CTL specific for NY-ESO-1. Although sequential DAC/DP exposure did not uniformly enhance immune recognition of target cells compared with DAC alone, this treatment mediated profound induction of apoptosis in cancer cells but not normal human bronchial epithelia. The apoptotic effects of DAC, DP, or sequential DAC-DP did not correlate in an obvious manner with histology, or the magnitude of NY-ESO-1 induction in cancer cells. Although the mechanisms have not been fully defined, sequential DAC-DP treatment may be a novel strategy to augment antitumor immunity in cancer patients.
    Journal of Immunotherapy 04/2001; 24(2):151-161.
  • [Show abstract] [Hide abstract]
    ABSTRACT: NY-ESO-1 is an attractive candidate tumor antigen for the development of immunotherapy for a wide variety of cancers. It is expressed in multiple types of tumors, but its normal tissue distribution is predominantly limited to the testes and ovaries; furthermore, both humoral and cellular immune responses can be mounted against this protein. Three overlapping HLA-A2.1-restricted T-cell epitopes have been identified within NY-ESO-1. In this investigation, the authors evaluated the in vitro immunogenicity of these peptides. From 2 of 12 HLA-A2.1+ patients with metastatic melanoma, peptide-reactive cytotoxic T-lymphocytes were generated using either NY-ESO-1:157-167 or NY-ESO-1:157-165 but not NY-ESO-1:155-163. Because NY-ESO-1:157-165 is a 9 amino acid peptide completely contained within NY-ESO-1:157-167, it seemed likely that this peptide was the minimal determinant, and thus it was selected for continued study. An amino acid substitution of C to V was introduced into NY-ESO-1:157-165 at P9 to attempt to improve its immunogenicity by enhancing its binding affinity to HLA-A2.1 and increasing its stability in solution, because the C residue is readily oxidized, leading to dimerization of the peptide. From 5 of 20 HLA-A2.1+ patients with metastatic melanoma, NY-ESO-1:157-165(165V) stimulated cytotoxic T-lymphocytes in vitro, which recognized peptide-pulsed target cells and HLA-A2.1+ NY-ESO-1+ tumor cells, suggesting that this peptide may be clinically valuable for the treatment of patients with NY-ESO-1+ tumors.
    Journla of Immunotherapy 01/2001; 24(1):1-9. · 3.46 Impact Factor

Publication Stats

3k Citations
228.07 Total Impact Points

Institutions

  • 1998–2011
    • National Institutes of Health
      • Branch of Surgery
      Bethesda, MD, United States
    • National Institute of Allergy and Infectious Diseases
      • Laboratory of Immunoregulation
      Maryland, United States
  • 1996–2009
    • National Cancer Institute (USA)
      • • Surgery Branch
      • • Center for Cancer Research
      Bethesda, MD, United States