Tse-Ming Hong

National Cheng Kung University, 臺南市, Taiwan, Taiwan

Are you Tse-Ming Hong?

Claim your profile

Publications (36)261.69 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Increased activity or expression of integrin-linked kinase (ILK), which regulates cell adhesion, migration, and proliferation, leads to oncogenesis. We identified the molecular basis for the regulation of ILK and its alternative role in conferring ERK1/2/NF-¿B-mediated growth advantages to gastric cancer cells.ResultsInhibiting ILK with short hairpin RNA or T315, a putative ILK inhibitor, abolished NF-¿B-mediated the growth in the human gastric cancer cells AGS, SNU-1, MKN45, and GES-1. ILK stimulated Ras activity to activate the c-Raf/MEK1/2/ERK1/2/ribosomal S6 kinase/inhibitor of ¿B¿/NF-¿B signaling by facilitating the formation of the IQ motif-containing GTPase-activating protein 1 (IQGAP1)¿Ras complex. Forced enzymatic ILK expression promoted cell growth by facilitating ERK1/2/NF-¿B signaling. PI3K activation or decreased PTEN expression prolonged ERK1/2 activation by protecting ILK from proteasome-mediated degradation. C-terminus of heat shock cognate 70 interacting protein, an HSP90-associated E3 ubiquitin ligase, mediated ILK ubiquitination to control PI3K- and HSP90-regulated ILK stabilization and signaling. In addition to cell growth, the identified pathway promoted cell migration and reduced the sensitivity of gastric cancer cells to the anticancer agents 5-fluorouracil and cisplatin. Additionally, exogenous administration of EGF as well as overexpression of EGFR triggered ILK- and IQGAP1-regulated ERK1/2/NF-¿B activation, cell growth, and migration.Conclusion An increase in ILK non-canonically promotes ERK1/2/NF-¿B activation and leads to the growth of gastric cancer cells.
    Cell Communication and Signaling 11/2014; 12(1):69. DOI:10.1186/PREACCEPT-1726031400128999 · 4.67 Impact Factor
  • Cancer Research 10/2014; 74(19 Supplement):4401-4401. DOI:10.1158/1538-7445.AM2014-4401 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myofibroblasts plays a key role in wound healing by secreting growth factors and chemoattractants to create new substrates and proteins in the extracellular matrix. We have found that galectin-1, a β-galactose-binding lectin involved in many physiological functions, induces myofibroblasts activation, however, the mechanism remains unclear. Here, we reveal that galectin-1-null (Lgals1(-/-)) mice exhibited a delayed cutaneous wound healing response. Galectin-1 induced myofibroblast activation, migration and proliferation by triggering intracellular reactive oxygen species (ROS) production. A ROS-producing protein, NADPH oxidase 4 (NOX4), was upregulated by galectin-1 through the neuropilin-1/Smad3 signaling pathway in myofibroblasts. Subcutaneous injection of galectin-1 into wound areas accelerated the healing of general and pathological (streptozotocin-induced diabetes mellitus) wounds and decreased the mortality of diabetic mice with skin wounds. These findings indicate that galectin-1 is a key regulator of wound repair that has therapeutic potential for pathological or imperfect wound healing.Journal of Investigative Dermatology accepted article preview online, 09 July 2014; doi:10.1038/jid.2014.288.
    Journal of Investigative Dermatology 07/2014; 135(1). DOI:10.1038/jid.2014.288 · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-small cell lung cancers (NSCLCs) cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R), TGF-beta receptor type-1 (TGFBR1), and epidermal growth factor receptor (EGFR), are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.
    PLoS ONE 05/2014; 9(5):e96765. DOI:10.1371/journal.pone.0096765 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-1 (Gal-1) is a β-galactoside-binding lectin that regulates endothelial cell migration, proliferation, and adhesion. However, the effect of Gal-1 on vascular permeability and the underlying mechanisms are unclear. We found that high Gal-1 expression was associated with elevated tumor vascular permeability in specimens of oral squamous cell carcinoma. Using transendothelial passage of FITC-dextran and a Miles assay, we demonstrated that Gal-1 increased vascular permeability extracellularly through its carbohydrate recognition domain. Mechanism dissection revealed that the neuropilin (NRP)-1/vascular endothelial growth factor receptor- (VEGFR)-1 complex was required for Gal-1-regulated vascular permeability. Activation of VEGFR-1 triggered activation of Akt which led to a reduction in vascular endothelial-cadherin at cell-cell junctions and resulted in cytoskeletal rearrangement. Both inhibition of Gal-1 secreted from cancer cells and administration of an anti-Gal-1 antibody in the tumor microenvironment suppressed tumor growth and vascular permeability in xenograft models. In conclusion, our results demonstrate a novel function of Gal-1 of increasing vascular permeability through the NRP-1/VEGFR1 and Akt signaling pathway and indicate that targeting Gal-1 by an anti-Gal-1 antibody is a feasible therapy for vascular hyperpermeability and cancer.
    Angiogenesis 04/2014; DOI:10.1007/s10456-014-9431-8 · 4.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural products are the major sources of currently available anticancer drugs. We recently reported that phenanthrene-based tylophorine derivative-1 (PBT-1) may be a potential antitumor agent for lung adenocarcinoma. We therefore examined the direct targets of PBT-1 and their effects in inhibiting lung adenocarcinoma. We found that PBT-1 reduced the level of Slug and inhibited the migration, invasion, and filopodia formation of lung adenocarcinoma CL1-5 cells in vitro. In addition, PBT-1 displayed in vivo antitumor and anti-metastasis activities against subcutaneous and orthotopic xenografts of CL1-5 cells in nude mice. Chemical proteomics showed that heat shock protein 90 (HSP90) and heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) bound PBT-1 in CL1-5 cells. Inhibition of HSP90 and hnRNP A2/B1 reduced the activation of AKT and Slug expression. Taken together, these findings suggest that PBT-1 binds to HSP90 and/or hnRNP A2/B1 and initiates antitumor activities by affecting Slug and AKT-mediated metastasis and tumorigenesis.
    Journal of Medicinal Chemistry 01/2014; 57(3). DOI:10.1021/jm401686b · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor angiogenesis is a critical process during cancer progression that modulates tumor growth and metastasis. Here, we identified an anti-angiogenic microRNA, miR-320, which is decreased in oral squamous cell carcinoma (OSCC) cell lines and tumor tissues from OSCC patients, down-regulated in blood vessels and inversely correlated with vascularity in OSCC tissues. Neuropilin 1 (NRP1), an important regulator of angiogenesis, was found to be a target of miR-320. The 3'-untranslated region of NRP1 mRNA contains multiple miR-320 binding sites, and its expression was regulated by miR-320. By administering either miR-320 precursor or antagonist, we found that miR-320 suppressed the migration, adhesion and tube formation of vascular endothelial cells. Knockdown of NRP1 abolished antagomiR-320-induced cell migration. Additionally, miR-320 expression was regulated by hypoxia in growth factor-deficient conditions by the hypoxia-inducible factor 1-alpha. Furthermore, lentivirus carrying the miR-320 precursor suppressed the tumorigenicity of OSCC cells and tumor angiogenesis in vivo. Taken together, these data show that miR-320 regulates the function of vascular endothelial cells by targeting NRP1 and has the potential to be developed as an anti-angiogenic or anti-cancer drug.
    Angiogenesis 10/2013; DOI:10.1007/s10456-013-9394-1 · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tid1 (DNAJA3), a DnaJ co-chaperone, may promote degradation of oncogenic kinases. Tid1 has two isoforms, Tid1-L and Tid1-S, that may function differently. In this study, we investigated the role of the Tid1 isoforms in regulating EGFR signaling and lung cancer progression. We found that both Tid1-L and Tid1-S expressions were reduced in patients with non-small cell lung cancer compared with normal counterparts. Tid1-L expression correlated inversely with EGFR expression. Low Tid1-L/high EGFR expression predicted poor overall survival in lung adenocarcinoma patients. Tid1-L overexpression in lung cancer cells attenuated EGFR signaling and inhibited cell proliferation, colony formation and tumor growth in subcutaneous and orthotropic xenograft models. Conversely, depletion of Tid1 restored EGFR signaling and increased cell proliferation and colony formation. Tid1-L, but not Tid1-S interacted with EGFR/HSP70/HSP90 through the DnaJ domain, counteracting the EGFR regulatory function of HSP90 by causing EGFR ubiquitinylation and proteasomal degradation. Tid1-L inhibited EGFR signaling even more than the HSP90 inhibitor 17-allylamino-demethoxy geldanamycin. We concluded that Tid1-L acted as a tumor suppressor by inhibiting EGFR signaling through interaction with EGFR/HSP70/HSP90 and enhancing EGFR ubiquitinylation and degradation.
    Cancer Research 05/2013; 73(13). DOI:10.1158/0008-5472.CAN-12-4066 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulation of microRNAs has a critical role in cancer progression. Here we identify an intronic microRNA, miR-135b that is upregulated in highly invasive non-small-cell lung cancer cells. Expression of miR-135b enhances cancer cell invasive and migratory abilities in vitro and promotes cancer metastasis in vivo, while specific inhibition of miR-135b by a miR-135b-specific molecular sponge and antagomirs suppresses cancer cell invasion, orthotopic lung tumour growth and metastasis in a mouse model. miR-135b targets multiple key components in the Hippo pathway, including LATS2, β-TrCP and NDR2, as well as LZTS1. Expression of miR-135b, LZTS1, LATS2 and nuclear TAZ predicts poor outcomes of non-small-cell lung cancer. We find that miR-135b is dually regulated by DNA demethylation and nuclear factor-kappaB signalling, implying that abnormal expression of miR-135b in cancer may result from inflammatory and epigenetic modulations. We conclude that miR-135b is an oncogenic microRNA and a potential therapeutic target for non-small-cell lung cancer.
    Nature Communications 05/2013; 4:1877. DOI:10.1038/ncomms2876 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The motor protein kinesin superfamily proteins (KIFs) are involved in cancer progression. The depletion of one of the KIFs, KIF14, might delay the metaphase-to-anaphase transition, resulting in a binucleated status, which enhances tumor progression; however, the exact correlation between KIF14 and cancer progression remains ambiguous. In this study, using loss of heterozygosity and array comparative genomic hybridization analyses, we observed a 30% loss in the regions surrounding KIF14 on chromosome 1q in lung adenocarcinomas. In addition, the protein expression levels of KIF14 in 122 lung adenocarcinomas also indicated that approximately 30% of adenocarcinomas showed KIF14 down-regulation compared with the expression in the bronchial epithelial cells of adjacent normal counterparts. In addition, the reduced expression of KIF14 mRNA or proteins was correlated with poor overall survival (P = 0.0158 and <0.0001, respectively), and the protein levels were also inversely correlated with metastasis (P<0.0001). The overexpression of KIF14 in lung adenocarcinoma cells inhibited anchorage-independent growth in vitro and xenograft tumor growth in vivo. The overexpression and silencing of KIF14 also inhibited or enhanced cancer cell migration, invasion and adhesion to the extracellular matrix proteins laminin and collagen IV. Furthermore, we detected the adhesion molecules cadherin 11 (CDH11) and melanoma cell adhesion molecule (MCAM) as cargo on KIF14. The overexpression and silencing of KIF14 enhanced or reduced the recruitment of CDH11 in the membrane fraction, suggesting that KIF14 might act through recruiting adhesion molecules to the cell membrane and modulating cell adhesive, migratory and invasive properties. Thus, KIF14 might inhibit tumor growth and cancer metastasis in lung adenocarcinomas.
    PLoS ONE 04/2013; 8(4):e61664. DOI:10.1371/journal.pone.0061664 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemically modified antisense RNA oligonucleotides (antagomir) offer promise for cancer therapies but suffer from poor therapeutic effect after systemic administration. Chemical modification or loading in degradable hydrogels can offer improvements in the accuracy and efficacy for sustained delivery at specific sites. In our approach, antagomir were entrapped with degradable poly(ethylene glycol) (PEG)-based hydrogels, with and without incorporation of imidazole. Superparamagnetic iron oxide nanoparticles (SPION) were simultaneously loaded with intent for magnetic resonance imaging (MRI). The incorporation of imidazole into the PEG hydrogels led to a tunable-pH-response that dictated hydrogel swelling ratio and release rate of antagomir and SPION. As a result, the PEG–imidazole hydrogel swelling ratio and degradation over a 5 week period changed up to 734% and 149% as the pH dropped from 7.4 to 6.7, respectively. The swelling ratio of PEG–imidazole hydrogels was completely reversible over repeatable cycles of pH change. The stimuli-responsive behavior of PEG–imidazole hydrogels was used for the release of antagomir and SPION under conditions consistent with tumor acidosis. This manuscript demonstrates feasibility in designing tunable-pH-responsive hydrogels for loading multimodality therapeutic and contrast agents to enhance the bioactivity of chemically modified antisense RNA oligonucleotide and SPION for acidosis-related tumor therapy and MRI imaging applications.
    Biomaterials 03/2013; DOI:10.1016/j.biomaterials.2013.02.058 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) is a leading cause of mortality and morbidity in men worldwide, and emerging evidence suggests that the CD44(high) prostate cancer initiating cells (TICs) are associated with its poor prognosis. Although microRNAs are frequently dysregulated in human cancers, the influence of microRNAs on PCa malignancy and whether targeting TIC-associated microRNAs inhibit PCa progression remain unclear. Here, we found that miR-320 is significantly downregulated in PCa. Overexpression of miR-320 in PCa cells decreases PCa tumorigenesis in vitro and in vivo. Global gene expression profiling of miR-320-overexpressing PCa cells reveals that downstream target genes of Wnt/β-catenin pathway and cancer stem cell markers are significantly decreased. MicroRNA-320 inhibits β-catenin expression by targeting the 3'-untranslated region of β-catenin mRNA. The reduction of miR-320 associated with increased β-catenin was also found in CD44(high) sub-population of prostate cancer cells and clinical PCa specimens. Interestingly, knockdown of miR-320 significantly increases the cancer stem-like properties, such as tumorsphere formation, chemoresistance, and tumorigenic abilities, while enriching the population of stem-like TICs among PCa cells. Furthermore, increased miR-320 expression in prostate stem-like TICs significantly suppresses stem cell-like properties of PCa cells. These results support that miR-320 is a key negative regulator in prostate TICs, and suggest developing miR-320 as a novel therapeutic agent may offer benefits for PCa treatment.
    Carcinogenesis 11/2012; DOI:10.1093/carcin/bgs371 · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: α-catulin is oncoprotein that help sustains proliferation by preventing cellular senescence. Here we report that α-catulin also drives malignant invasion and metastasis. α-catulin was upregulated in highly invasive non-small cell lung cancer (NSCLC) cell lines, where its ectopic expression or shRNA-mediated attenuation enhanced or limited invasion or metastasis, respectively. α-catulin interacted with integrin-linked kinase (ILK), a serine/threonine protein kinase implicated in cancer cell proliferation, anti-apoptosis, invasion and angiogenesis. Attenuation of ILK or α-catulin reciprocally blocked cell migration and invasion induced by the other protein. Mechanistic investigations revealed that α-catulin activated Akt-NFkB signaling downstream of ILK, which in turn led to increased expression of fibronectin and integrin avß3. Pharmacological or antibody-mediated blockade of NFkB or avß3 was sufficient to inhibit α-catulin-induced cell migration and invasion. Clinically, high levels of expression of α-catulin and ILK were associated with poor overall survival in NSCLC patients. Taken together, our study demonstrates that α-catulin plays a critical role in cancer metastasis by activating the ILK-mediated Akt-NFkB-avß3 signaling axis.
    Cancer Research 10/2012; 73(1). DOI:10.1158/0008-5472.CAN-12-2095 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trop-2, a cell surface glycoprotein, contains both extracellular epidermal growth factor-like and thyroglobulin type-1 repeat domains. Low TROP2 expression was observed in lung adenocarcinoma tissues as compared with their normal counterparts. The lack of expression could be due to either the loss of heterozygosity (LOH) or hypermethylation of the CpG island DNA of TROP2 upstream promoter region as confirmed by bisulphite sequencing and methylation-specific (MS) polymerase chain reaction (PCR). 5-Aza-2'-deoxycytidine treatment on lung cancer cell (CL) lines, CL1-5 and A549, reversed the hypermethylation status and elevated both TROP2 mRNA and protein expression levels. Enforced expression of TROP2 in the lung CL line H1299 reduced AKT as well as ERK activation and suppressed cell proliferation and colony formation. Conversely, silencing TROP2 with shRNA transfection in the less efficiently tumour-forming cell line H322M enhanced AKT activation and increased tumour growth. Trop-2 could attenuate IGF-1R signalling-mediated AKT/β-catenin and ERK activation through a direct binding of IGF1. In conclusion, inactivation of TROP2 due to LOH or by DNA methylation may play an important role in lung cancer tumourigenicity through losing its suppressive effect on IGF-1R signalling and tumour growth.
    EMBO Molecular Medicine 06/2012; 4(6):472-85. DOI:10.1002/emmm.201200222 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LCRMP-1, a novel isoform of CRMP-1, can promote cancer cell migration, invasion and associate with poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). However, the underlying regulatory mechanisms of LCRMP-1 in cancer cell invasiveness still remain obscure. Here, we report that GSK3β can phosphorylate LCRMP-1 at Thr-628 in consensus sequences and this phosphorylation is crucial for function of LCRMP-1 to promote filopodia formation, migration and invasion in cancer cells. Impediment of Thr-628 phosphorylation attenuates the stimulatory effects of LCRMP-1 on filopodia forming, migration and invasion abilities in cancer cells; simultaneously, kinase-dead GSK3β diminishes regulation of LCRMP-1 on cancer cell invasion. Furthermore, we also found that patients with low-level Ser-9-phosphorylated GSK3β expression and high-level LCRMP-1 expression have worse overall survival than those with high-level inactive GSK3β expressions and low-level LCRMP-1 expressions (P<0.0001). Collectively, these results demonstrate that GSK3β-dependent phosphorylation of LCRMP-1 provides an important mechanism for regulation of LCRMP-1 on cancer cell invasiveness and clinical outcome.
    PLoS ONE 02/2012; 7(2):e31689. DOI:10.1371/journal.pone.0031689 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is a predominant cause of death in patients with cancer. It is a complex multistep process that needs to be better understood if we are to develop new approaches to managing tumor metastasis. Tumor cell invasion of the local stroma is suppressed by collapsin response mediator protein-1 (CRMP-1). Recently, we identified a long isoform of CRMP-1 (LCRMP-1), expression of which correlates with cancer cell invasiveness and poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). Here, we report that LCRMP-1 overexpression in noninvasive human cell lines enhanced filopodia formation, cancer cell migration, and invasion via stabilization of actin. This effect required a highly conserved N-terminal region of LCRMP-1 as well as the WASP family verprolin-homologous protein-1/actin nucleation pathway (WAVE-1/actin nucleation pathway). Furthermore, LCRMP-1 appeared to act downstream of Cdc42, a Rho family protein known to be involved in actin rearrangement. In addition, LCRMP-1 associated with CRMP-1, which downregulated cancer cell metastasis by interrupting the association of LCRMP-1 and WAVE-1. Finally, we found that high-level expression of LCRMP-1 and low-level expression of CRMP-1 were associated with lymph node metastasis and poor survival in patients with NSCLC. In sum, we show that LCRMP-1 and CRMP-1 have opposing functions in regulating cancer cell invasion and metastasis and propose that this pathway may serve as a potential anticancer target.
    The Journal of clinical investigation 08/2011; 121(8):3189-205. DOI:10.1172/JCI42975 · 13.77 Impact Factor
  • Cancer Research 04/2011; 71(8 Supplement):2352-2352. DOI:10.1158/1538-7445.AM2011-2352 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carcinoma-associated fibroblasts (CAFs) in tumor stroma play an important role in tumor progression and have been associated with a poor prognosis in oral squamous cell carcinoma (OSCC). However, how CAFs influence OSCC malignancy and whether normalizing CAFs inhibits cancer progression remain unclear. The relationship between the expression of Galectin-1 (Gal-1) and alpha-smooth muscle actin (α-SMA, a CAF marker) in OSCC patient samples and primary cultured CAFs was examined by quantitative real-time PCR, Western blotting, and immunofluorescence. To examine the effect of Gal-1 on CAF activation and CAF-mediated tumor invasion and migration in vitro, Gal-1 expression was knocked down by small hairpin RNA. Finally, cancer cells and CAFs were coimplanted into SCID mice to evaluate the effect of Gal-1 on CAF-modulated tumor progression in vivo. Gal-1 expression is positively associated with α-SMA in the stroma of OSCC specimens. Gal-1 knockdown decreases activated CAF characteristics, resulting in a decrease in α-SMA expression and extracellular matrix protein production. Notably, blocking Gal-1 expression significantly inhibits CAF-conditioned medium-induced tumor cell migration and invasion, possibly by reducing the production of monocyte chemotactic protein-1 (MCP-1/CCL2). MCP-1 induces the migration of OSCC cells by binding to the receptor CCR2; adding an MCP-1 antibody to CAF-conditioned medium that inhibits the interaction between MCP-1 and CCR2 abolishes migration. Finally, we found that Gal-1 knockdown in CAFs significantly reduces CAF-augmented tumor growth and metastasis in vivo. Our findings demonstrate that Gal-1 regulates CAF activation and indicate that targeting Gal-1 in CAFs inhibits OSCC metastasis by modulating MCP-1 expression.
    Clinical Cancer Research 03/2011; 17(6):1306-16. DOI:10.1158/1078-0432.CCR-10-1824 · 8.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant protein phosphorylation plays important roles in cancer-related cell signaling. With the goal of achieving multiplexed, comprehensive, and fully automated relative quantitation of site-specific phosphorylation, we present a simple label-free strategy combining an automated pH/acid-controlled IMAC procedure and informatics-assisted SEMI (sequence, elution time, mass-to-charge, and internal standard) algorithm. The SEMI strategy effectively increased the number of quantifiable peptides more than 4-fold in replicate experiments (from 262 to 1171, p < 0.05, false discovery rate = 0.46%) by using a fragmental regression algorithm for elution time alignment followed by peptide cross-assignment in all LC-MS/MS runs. In addition, the strategy demonstrated good quantitation accuracy (10-12%) for standard phosphoprotein and variation less than 1.9 fold (within 99% confidence range) in proteome scale and reliable linear quantitation correlation (R(2) = 0.99) with 4000-fold dynamic concentrations, which was attributed to our reproducible experimental procedure and informatics-assisted peptide alignment tool to minimize system variations. In an attempt to explore metastasis-associated phosphoproteomic alterations in lung cancer, this approach was used to delineate differential phosphoproteomic profiles of a lung cancer metastasis model. Without sample fractionation, the SEMI algorithm enabled quantification of 1796 unique phosphopeptides (false discovery rate = 0.56%) corresponding to 854 phosphoproteins from a series of non-small cell lung cancer lines with varying degrees of in vivo invasiveness. Nearly 40% of the phosphopeptides showed >2-fold change in highly invasive cells; validation of phosphoprotein subsets by Western blotting not only demonstrated the consistency of data obtained by our SEMI strategy but also revealed that such dramatic changes in the phosphoproteome result mostly from translational or post-translational regulation. Mapping of these differentially expressed phosphoproteins in multiple cellular pathways related to cancer invasion and metastasis suggests that the site and degree of phosphorylation might have distinct patterns or functions in the complex process of cancer progression.
    Journal of Proteome Research 11/2010; 9(11):5582-97. DOI:10.1021/pr100394u · 5.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Midbody, a transient organelle-like structure, is known as central for abscission and is indispensable for termination of cytokinesis. Here, we used the midbody proteome inventories to construct the potential midbody protein-protein interaction (PPI) network. To delineate novel regulators participating in cytokinesis, the z-score, a standard statistic score, rather than hub degree was implemented to prioritize the novel hubs. Of these hubs, KIAA0133, SEPT1, KIAA1377, and CRMP-1 were localized to the midbody, whereas HTR3A and ICAM2 were associated with the cleavage furrow as examined by immunofluorescence. Knockdown of SEPT1 and KIAA1377 resulted in increasing numbers of cytokinesis defect cells, suggesting these newly identified hubs play critical roles in cytokinesis progression. Moreover, ectopic expression of CRMP-1 mutant in which Aurora-A phosphorylation sites have been replaced with Ala results in a cytokinesis defect. This subproteome network construction not only sheds light on the intimate interactions of the midbody proteomes, but also prioritizes novel hubs or protein complexes that may govern the process of cytokinesis.
    Journal of Proteome Research 10/2009; 8(11):4943-53. DOI:10.1021/pr900325f · 5.00 Impact Factor

Publication Stats

1k Citations
261.69 Total Impact Points

Institutions

  • 2007–2014
    • National Cheng Kung University
      • • Institute of Clinical Medicine
      • • Institute of Basic Medical Sciences
      臺南市, Taiwan, Taiwan
    • National Chung Hsing University
      臺中市, Taiwan, Taiwan
  • 2008–2013
    • National Taiwan University
      • Graduate Institute of Molecular Medicine
      Taipei, Taipei, Taiwan
  • 2003–2012
    • Academia Sinica
      • Institute of Biomedical Sciences
      T’ai-pei, Taipei, Taiwan
  • 2009
    • National Defense Medical Center
      • Graduate Institute of Life Sciences
      Taipei, Taipei, Taiwan
  • 2001–2005
    • National Taiwan University Hospital
      • Department of Internal Medicine
      Taipei, Taipei, Taiwan