Soraya S Smaili

Universidade Federal de São Paulo, San Paulo, São Paulo, Brazil

Are you Soraya S Smaili?

Claim your profile

Publications (60)208.11 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bothropoides insularis (jararaca-ilhoa) is a native endemic snake limited to the specific region of Queimada Island, on São Paulo coast. Several local and systemic effects have been described due to envenomation caused by it, such as edema, tissue necrosis, hemorrhage and acute renal failure. Our previous studies have shown that Bothropoides insularis venom (BinsV) demonstrated important functional and morphologic alterations in rat isolated kidney, especially decrease in tubular electrolyte transport, osmotic clearance and tubular necrosis. In order to elucidate the direct nephrotoxicity mechanism, the aim of the present study was to investigate BinsV cytotoxicity effect on renal epithelial cells. The treatment with BinsV over MDCK culture decreased cell viability in all concentrations tested with IC50 of 9 μg/mL. BinsV was able to induce membrane rupture and cell death with phosphatidilserine externalization. Furthermore, BinsV induced ROS overproduction and mitochondrial membrane potential collapse, as well as Bax translocation and caspases 3 and 7 expression. Therefore, these events might be responsible by BinsV-induced cell death caused by mitochondrial dysfunction and ROS overproduction in the direct cytotoxicity process.
    Toxicon 09/2014; DOI:10.1016/j.toxicon.2014.05.009 · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the accumulation of the neurotoxic peptide β-amyloid (Aβ) in the central nervous system is a hallmark of Alzheimer's disease, whether Aβ acts in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that cytosolic Ca2+ dysregulation, induced by a neurotoxic fragment (Aβ25–35), caused apoptosis in a concentration-dependent manner, leading to cytoplasmic Ca2+ mobilization from extra- and intracellular sources, mainly from the endoplasmic reticulum (ER) via IP3 receptor activation. This mechanism was related to Aβ-mediated apoptosis by the intrinsic pathway because the expression of pro-apoptotic Bax was accompanied by its translocation in cells transfected with GFP-Bax. Aβ-mediated apoptosis was reduced by BAPTA-AM, a fast Ca2+ chelator, indicating that an increase in intracellular Ca2+ was involved in cell death. Interestingly, the Bax translocation was dependent on Ca2+ mobilization from IP3 receptors because pre-incubation with xestospongin C, a selective IP3 receptor inhibitor, abolished this response. Taken together, these results provide evidence that Aβ dysregulation of Ca2+ homeostasis induces ER depletion of Ca2+ stores and leads to apoptosis; this mechanism plays a significant role in Aβ apoptotic cell death and might be a new target for neurodegeneration treatments.
    European Journal of Neuroscience 05/2014; 40(3). DOI:10.1111/ejn.12599 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified as an important modulator of Ca(2+) release from the endo-lysosomal system in a variety of cells by a new and ubiquitous class of endo-lysosomal ion channels known as the two-pore channels (TPCs). However, the role of TPCs in NAADP action in smooth muscle is not known. In the present work, we investigated the effects of NAADP in gastric smooth muscle cells and its ability to release Ca(2+) by TPCs. We show that Ca(2+) signals mediated by NAADP were inhibited by disrupting Ca(2+) handling by either acidic organelles (using bafilomycin A1) or the Endoplasmic Reticulum (using thapsigargin, ryanodine or 2-APB). Transcripts for endogenous TPC1 and TPC2 were readily detected and recombinant TPCs localized to the endosomes and/or lysosomes. Overexpression of wild-type TPCs but not pore mutants enhanced NAADP-mediated cytosolic Ca(2+) signals. Desensitizing the NAADP pathway inhibited Ca(2+)-responses to extracellular stimulation with carbachol but not ATP. Taken together, these results indicate that NAADP likely induces Ca(2+) release from the endolysosomal system through TPCs which is subsequently amplified via the ER in an agonist-specific manner. Thus, we suggest a second messenger role for NAADP in smooth muscle cells.
    Cell Calcium 04/2014; DOI:10.1016/j.ceca.2014.04.005 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for new compounds that induce p53-independent apoptosis is the focus of many studies in cancer biology because these compounds could be more specific and would overcome chemotherapy resistance. In this study, we evaluated the in vitro antitumour activity of a Biphosphinic Palladacycle Complex (BPC) and extended preclinical studies to an in vivo model. Saos-2 cells, a p53-null human osteosarcoma drug-resistant cell line, were treated with BPC in the presence or absence of a cathepsin B inhibitor and a calcium chelator (CA074 and BAPTA-AM, respectively), and several parameters related to apoptosis were evaluated. Preclinical studies were performed with mice that were intravenously inoculated with murine melanoma B16F10-Nex2 cells and treated intraperitoneally (i.p.) with BPC (8 mg/kg/day) for ten consecutive days, when lung metastatic nodules were counted. In vitro data show that BPC induces cell death in Saos-2 cells mainly by apoptosis, which was accompanied by the effector caspase-3 activation. These events are most likely related to Bax translocation and increased cytosolic calcium mobilisation, mainly from intracellular compartments. Lysosomal Membrane Permeabilisation (LMP) was also observed after 12 h of BPC exposure. Interestingly, BAPTA-AM and CA074 significantly decreased BPC cytotoxicity, suggesting that both calcium and cathepsin B are required for BPC antitumour activity. In vivo studies demonstrated that BPC protects mice against murine metastatic melanoma. In conclusion, BPC complex is an effective anticancer compound against metastatic murine melanoma. This complex is cytotoxic to the drug-resistant osteosarcoma Saos-2 human tumour cells by inducing apoptosis triggered by calcium signalling and a lysosomal-dependent pathway.
    European Journal of Medicinal Chemistry 03/2014; 79C:24-33. DOI:10.1016/j.ejmech.2014.03.073 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the molecular mechanisms of Cytarabine, one of the most important drugs used in the leukaemia's treatment, are only partially understood and the role of autophagy on leukaemia development and treatment is only recently being investigated, in this study, by using Chloroquine (CQ) and 3-methyladenine (3MA) as autophagy inhibitors, we aim to evaluate the contribution of an autophagic mechanism to Cytarabine (AraC)-induced death of HL60 leukaemia cells. Trypan blue exclusion and AnnexinV/PI assays were used to evaluate HL60 cell death under AraC treatment in the presence or absence of 3MA and CQ. Western blotting and immunofluorescence experiments were performed to show the involvement of apoptosis and autophagy protein expressions. Phenotypic characterization of HL60-treated cells was performed by using immunophenotyping. Clonogenic assays were applied to analyse clonal function of HL60-treated cells. We observed that although autophagy inhibition by 3MA, but not CQ, increased the death of HL60 AraC cells after 24 h of treatment, no significant differences between AraC and AraC + 3MA-treated groups were observed by using clonogenic assay. In addition, increased number of immature (CD34(+)/CD38(-)Lin(-/low)) HL60 cells was found in AraC and AraC-3MA groups when compared with control untreated cells. Although AraC anti-leukaemia effects could be potentiated by 3MA autophagy inhibition after 24 h of exposure, leukaemia cell resistance, the main causes of treatment failure, is also promoted by autophagy initial stage impairment by 3MA, denoting the complex role of autophagy in leukaemia cells' response to chemotherapy.
    Journal of Cancer Research and Clinical Oncology 03/2014; 140(6). DOI:10.1007/s00432-014-1640-4 · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cited By (since 1996):4, Export Date: 18 October 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a mechanism of protection against various forms of human diseases, such as cancer, in which autophagy seems to have an extremely complex role. In cancer, there is evidence that autophagy may be oncogenic in some contexts, whereas in others it clearly contributes to tumor suppression. In addition, studies have demonstrated the existence of a complex relationship between autophagy and cell death, determining whether a cell will live or die in response to anticancer therapies. Nevertheless, we still need to complete the autophagy-apoptosis puzzle in the tumor context to better address appropriate chemotherapy protocols with autophagy modulators. Generally, tumor cell resistance to anticancer induced-apoptosis can be overcome by autophagy inhibition. However, when an extensive autophagic stimulus is activated, autophagic cell death is observed. In this review, we discuss some details of autophagy and its relationship with tumor progression or suppression, as well as role of autophagy-apoptosis in cancer treatments.
    Chemico-biological interactions 10/2013; 206(2). DOI:10.1016/j.cbi.2013.09.018 · 2.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by severe striatal atrophy with extensive neuronal loss and gliosis. Although the molecular mechanism is not well understood, experimental studies use the irreversible mitochondrial inhibitor 3-nitropropionic acid (3-NP) to mimic the neuropathological features of HD. In this study, the role of autophagy as a neuroprotective mechanism against 3-NP-induced astrocyte cytotoxicity was evaluated. Autophagy is a catabolic process that is essential for the turnover of cytosolic proteins and organelles and is involved in the modulation of cell death and survival. We showed that 3-NP-induced apoptosis, which was accompanied by Bax and Beclin-1 upregulation, was dependent on acidic vesicular organelle (AVO) formation after a continuous exposure to 3-NP for 12 h. The upregulation of Bax and Beclin-1 as well as AVO formation were normalized 24 h after 3-NP exposure.
    Neurochemical Research 10/2013; DOI:10.1007/s11064-013-1154-5 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced activity of the sympatho-adrenal axis and augmented circulating catecholamines has been implicated in the development of hypertension. Release of catecholamine from stimulated adrenal medulla chromaffin cells has been shown to be higher and longer in spontaneously hypertensive rats (SHRs), compared with normotensive Wistar rats (NWRs). Whether differences in the functional expression of voltage-dependent calcium channels (VDCCs) of the L-, N-, or P/Q subtypes may contribute to such distinct secretory behaviour, is unknown. We therefore approached here this study in voltage-clamped NWR and SHR chromaffin cells, using 10mM Ba(2+) as charge carrier (IBa) and selective blockers of each channel type. We found that compared with NWR cells, SHR chromaffin cells exhibited the following differences: (1) 30% diminution of the IBa fraction carried by L channels; (2) a doubling of the IBa fraction carried by P/Q channels; (3) more visible current modulation by ATP that could be linked to a 10-fold higher mRNA levels for purinergic receptors of the P2Y2 subtype; and (3) a higher contribution of PQ channels to the transients of the cytosolic calcium concentrations ([Ca(2+)]c) generated by K(+), compared with L channels. These results may contribute to the better understanding of the greater calcium signalling and exocytotic responses of SHR compared with NWR chromaffin cells, found in three previous reports from our laboratories.
    European journal of pharmacology 03/2013; 706(1-3). DOI:10.1016/j.ejphar.2013.02.046 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms that regulate programmed cell death, such as apoptosis, and the cellular self-eating phenomenon of autophagy, share many regulatory systems and common pathways. These mechanisms have been extensively investigated over the last few years. Some intracellular structures may determine and control the autophagic fate of the cell such as the endoplasmic reticulum, mitochondria, and lysosomes. The coordination and interrelation of these organelles are crucial in maintaining calcium levels and general cellular homeostasis, as well as in regulating cell life and death under physiological and pathological conditions, including cancer, neurodegeneration, and aging. In this review, we discuss the crosstalk between the aforementioned organelles and their influence in apoptotic and autophagic processes.
    Current Molecular Medicine 12/2012; DOI:10.2174/156652413804810772 · 3.61 Impact Factor
  • Current Molecular Medicine 12/2012; DOI:10.2174/156652413804810754 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445-544. · 11.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
    Autophagy 04/2012; 8(4):445. · 11.42 Impact Factor
  • Source
    Autophagy 04/2012; 8(4):1-100. DOI:10.4161/auto.19496 · 11.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis induction is often associated with increased autophagy, indicating interplay between these two important cellular events in cell death and survival. In this study, the programmed cell death and autophagy induced by two nitrostyrene derivative compounds (NTS1 and NTS2) was studied using the tumorigenic Ehrlich ascitic tumor (EAT) cells. EAT cells were highly sensitive to NTS1 and NTS2 cytotoxicity in a dose-dependent manner. NTS1 and NTS2 IC(50) was less than 15.0μM post 12h incubation. Apoptosis was primarily induced by both compounds, as demonstrated by an increase in Annexin-V positive cells, concurrently with cytochrome c release from mitochondria to cytosol and caspase-3 activation. Although cytosolic Ca(2+) mobilization is involved in autophagy as well as apoptosis in response to cellular stress in many cancer cell types, from the two nitrostyrene derivative compounds studied, mainly NTS1 mobilized this ion and disparate autophagy in EAT cells. These results suggest that EAT induced cell death by NTS1 and NTS2 involved a Ca(2+)-dependent and a Ca(2+)-independent pathways, respectively. In accordance with these results, the treatment of EAT cells with 3 methyladenine (3-MA), an autophagy inhibitor; significantly increased the number of apoptotic cells after NTS1 treatment, suggesting that pharmacological modulation of autophagy augments the NTS1 efficacy. Thus, we denote the importance of studies involving autophagy and apoptosis during pre-clinical studies of new drugs with anticancer properties.
    European journal of pharmacology 03/2012; 678(1-3):6-14. DOI:10.1016/j.ejphar.2011.12.031 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging leads to progressive deterioration of physiological function and diminished responses to environmental stress. Organic and functional alterations are frequently observed in elderly subjects. Although chronic sleep loss is observed during senescence, little is known about the impact of insufficient sleep on cellular function in aging neurons. Disruption of neuronal calcium (Ca²⁺) signaling is related to impaired neuronal function and cell death. It has been hypothesized that sleep deprivation may compromise neuronal stability and induce cell death in young neurons; however, it is necessary to evaluate the impact of aging on this process. Therefore, the aim of this study was to evaluate the effects of chronic sleep restriction (CSR) on Ca²⁺ signaling and cell death in the hippocampus of young and aged animals. We found that glutamate and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced a greater elevation in cytosolic Ca²⁺ ([Ca²⁺](c)) in hippocampal slices from aged rats subjected to CSR compared to age-matched controls. Interestingly, aged-matched controls showed a reduced Ca²⁺ response to glutamate and FCCP, relative to both CSR and control young animals. Apoptotic nuclei were observed in aged rats from both treatment groups; however, the profile of apoptotic nuclei in aged CSR rats was highly variable. Bax and Bcl-2 protein expression did not change with aging in the CSR groups. Our study indicates that aging promotes changes in Ca²⁺ signaling, which may also be affected by CSR. These age-dependent changes in Ca²⁺ signaling may increase cellular vulnerability during CSR and contribute to Ca²⁺ signaling dysregulation, which may ultimately induce cell death.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 02/2012; 39(1):23-30. DOI:10.1016/j.pnpbp.2012.01.018 · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) and mitochondria are intracellular organelles and their interactions are directly involved in different processes such as Ca(2+) signaling in cell survival and death mechanisms. Bcl-2 is an anti-apoptotic protein intrinsically related to ER and mitochondria, modulating Ca(2+) content in these organelles. We investigated the effects of Bcl-2 overexpression on ER and mitochondrial Ca(2+) dynamics in PC12 cells. Bcl-2 overexpressing and control cells were loaded with Fura 2/AM and stimulated with different drugs. Results showed that in Bcl-2 cells, ACh induced a lower Ca(2+) response compared to control. Ca(2+) release induced by TG was decreased in Bcl-2 cells, however, it was greater in Caff induced Ca(2+) rise. In addition, FCCP induced a higher Ca(2+) release in Bcl-2 cells. These results suggest that Bcl-2 overexpression modulate the ER Ca(2+) pools differently and the release of ER Ca(2+) may increase mitochondrial Ca(2+) accumulation. These alterations of intracellular Ca(2+) stores are important mechanisms for the control of Ca(2+) signaling.
    Neurochemical Research 02/2012; 37(2):238-43. DOI:10.1007/s11064-011-0600-5 · 2.55 Impact Factor
  • Source
    Cell death and differentiation 11/2011; 19(1):184. DOI:10.1038/cdd.2011.169 · 8.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutamate is an important neurotransmitter in neurons and glial cells and it is one of the keys to the neuron-glial interaction in the brain. Glutamate transmission is strongly dependent on calcium homeostasis and on mitochondrial function. In the present work we presented several aspects related to the role of mitochondria in glutamate signaling and in brain diseases. We focused on glutamateinduced calcium signaling and its relation to the organelle dysfunction with cell death processes. In addition, we have discussed how alterations in this pathway may lead or aggravate a variety of neurodegenerative diseases. We compiled information on how mitochondria can influence cell fate during glutamate stimulation and calcium signaling. These organelles play a pivotal role in neuron and glial exchange, in synaptic plasticity and several pathological conditions related to Aging, Alzheimer's, Parkinson's and Huntington's diseases. We have also presented autophagy as a mechanism activated during mitochondrial dysfunction which may function as a protective mechanism during injury. Furthermore, some new perspectives and approaches to treat these neurodegenerative diseases are offered and evaluated.
    Current pharmaceutical design 09/2011; 17(35):3865-77. DOI:10.2174/138161211798357782 · 3.29 Impact Factor

Publication Stats

2k Citations
208.11 Total Impact Points

Institutions

  • 1998–2013
    • Universidade Federal de São Paulo
      • Departamento de Farmacologia
      San Paulo, São Paulo, Brazil
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
    • University of Chile
      • Centro Fondap de Estudios Moleculares de la Célula
      CiudadSantiago, Santiago, Chile
  • 1999–2001
    • National Institute of Child Health and Human Development
      Maryland, United States
    • National Institutes of Health
      • Section on Molecular Signal Transduction
      Maryland, United States