Merete Rasmussen

Roskilde University, Roskilde, Zealand, Denmark

Are you Merete Rasmussen?

Claim your profile

Publications (7)28.68 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Somatic defects in the mismatch repair system constitute an important pathway in colorectal carcinogenesis. We have examined the expression of mismatch repair proteins in sporadic stage IV colorectal tumors and their derived metastases. Sporadic tumors were further examined for differences in expression between the tumor transition zone and the invasive front. Expression of hMSH2, hMLH1, and hPMS2 was screened immunohistochemically in 92 stage IV tumors and derived liver metastases. In cases with loss of mismatch repair protein expression, lymph node metastases were also examined. Clinicopathological parameters and Ki-67 staining indexes were evaluated and compared. Four tumors displayed a complete loss of hMLH1/hPMS2 expression at the transition zone; however, three of these expressed both proteins at the invasive front and in liver and lymph node metastases. A further four were predominantly hMLH1/hPMS2 negative at the transition zone, but with distinct subclones of hMLH1/hPMS2-expressing cells at the transition zone. All of these tumors expressed hMLH1/hPMS2 at the invasive front and in liver metastases, with three also expressing hMLH/hPMS2 in lymph node metastases. No significant difference in the proliferative index was observed for the hMLH1/hPMS2-compromised group. In stage IV tumors re-expression of hMLH1/hPMS2 occurred, leading to different patterns of expression within the primary tumor and between tumor and metastases. This may have functional importance for the chemosensitivity of metastases compared to the primary tumor.
    Apmis 11/2009; 117(11):839-48. · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The definition of a hypothetical protein is a protein that is predicted to be expressed from an open reading frame, but for which there is no experimental evidence of translation. Hypothetical proteins constitute a substantial fraction of proteomes of human as well as of other eukaryotes. With the general belief that the majority of hypothetical proteins are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of hypothetical proteins with a high probability of being expressed. Here, we present an in silico selection strategy where eukaryotic hypothetical proteins are sorted according to two criteria that can be reliably identified in silico: the presence of subcellular targeting signals and presence of characterized protein domains. To validate the selection strategy we applied it on a database of human hypothetical proteins dating to 2006 and compared the proteins predicted to be expressed by our selecting strategy, with their status in 2008. For the comparison we focused on mitochondrial proteins, since considerable amounts of research have focused on this field in between 2006 and 2008. Therefore, many proteins, defined as hypothetical in 2006, have later been characterized as mitochondrial. Among the total amount of human proteins hypothetical in 2006, 21% have later been experimentally characterized and 6% of those have been shown to have a role in a mitochondrial context. In contrast, among the selected hypothetical proteins from the 2006 dataset, predicted by our strategy to have a mitochondrial role, 53-62% have later been experimentally characterized, and 85% of these have actually been assigned a role in mitochondria by 2008.Therefore our in silico selection strategy can be used to select the most promising candidates for subsequent in vitro and in vivo analyses.
    BMC Bioinformatics 09/2009; 10:289. · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: So far 18 MLH3 germline mutations/variants have been identified in familial colorectal cancer cases. Sixteen of these variants are amino acid substitutions of which the pathogenic nature is still unclear. These substitutions are known as unclassified variants or UVs. To clarify a possible role for eight of these MLH3 UVs identified in suspected Lynch syndrome patients, we performed several biochemical tests. We determined the protein expression and stability, protein localization and interaction of the mutant MLH3 proteins with wildtype MLH1. All eight MLH3 UVs gave protein expression levels comparable with wildtype MLH3. Furthermore, the UV-containing proteins, in contrast to previous studies, were all localized normally in the nucleus and they interacted normally with wildtype MLH1. Our different biochemical assays yielded no evidence that the eight MLH3 UVs tested are the cause of hereditary colorectal cancer, including Lynch syndrome.
    Genes Chromosomes and Cancer 02/2009; 48(4):340-50. · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial DNA (mtDNA) alterations are implicated in a broad range of human diseases and alterations of the mitochondrial genome are assumed to be a result of its high susceptibility to oxidative damage and its limited DNA repair compared to nuclear DNA (nDNA). Characterization of DNA repair mechanisms has generally focused on these processes in nDNA but increasing interest and research effort have contributed to our knowledge of the mechanisms underlying DNA repair in mitochondria. In this review, we make comparisons between nDNA and mtDNA repair pathways and propose a model for how these pathways interact in mitochondria.
    Mitochondrion 05/2005; 5(2):89-108. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary nonpolyposis colorectal cancer (HNPCC) is a common inherited form of neoplasia caused by germline mutations in DNA mismatch repair (MMR) genes. MMR proteins have been reported to associate with several proteins, including the human exonuclease 1 (hEXO1). We report here novel HNPCC-hMLH1 mutant proteins (T117M, Q426X and 1813insA) in Danish HNPCC patients. We demonstrate that these mutant HNPCC-hMLH1 proteins are unable to form complexes with hEXO1 and hPMS2 in vivo. The results indicate that mutations found in HNPCC gene carriers disrupt hMLH1-hEXO1 complex formation and hMutLalpha heterodimer assembly essential for MMR activity.
    Oncogene 07/2001; 20(27):3590-5. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in DNA mismatch repair (MMR) genes have been shown to segregate with Hereditary Nonpolyposis Colorectal Cancer (HNPCC). However, because many HNPCC families fail to display mutations in known MMR genes, we argued that changes in other components of the MMR pathway may be responsible. The increasing number of proteins reported to interact in the MMR pathway suggests that larger complexes are formed, the composition of which may differ among cell types and tissues. In an attempt to identify tissue-specific MMR-associated factors, we employed the yeast two-hybrid system, using the human hMSH2 as bait and a human fetal liver library as prey. We demonstrate that hMSH2 interacts with a human 5'-3' exonuclease 1 (hEXO1/HEX1) and that this interaction is mediated through their C-terminal domains. The hMSH6 protein does not interact with hEXO1 in the two-hybrid system. Dot-blot analysis of multiple tissue RNA revealed that hMSH2 and hEXO1 are coexpressed at high levels in fetal liver as well as in adult testis and thymus. Northern blot analysis also revealed that hEXO1/HEX1 is highly expressed in several liver cancer cell lines as well as in colon and pancreas adenocarcinomas, but not in the corresponding non-neoplastic tissue.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 07/2000; 460(1):41-52. · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.
    Experimental Cell Research 06/2000; 257(1):127-34. · 3.56 Impact Factor